介绍
Hologres 是阿里巴巴自主研发的一站式实时数仓引擎(Real-Time Data Warehouse),旨在为用户提供高性能、高可靠、低成本、可扩展的实时数据仓库解决方案。它支持海量数据的实时写入、实时更新、实时加工和实时分析,兼容标准SQL(包括PostgreSQL协议和语法),并支持PB级数据的多维分析(OLAP)和即席分析(Ad Hoc)。
Hologres 的主要功能特性包括:
-
多场景查询分析:支持行存、列存、行列共存等多种存储模式和索引类型,满足多样化的分析查询需求,使用大规模并行处理架构提高资源利用率。
-
亚秒级交互式分析:采用可扩展的大规模并行处理(MPP)架构,通过向量化算子和优化的存储格式,实现PB级数据的亚秒级交互式分析。
-
在线高性能主键点查:基于行存表的主键索引和查询引擎优化,支持高并发在线点查和实时更新。
-
联邦查询与数据湖加速:无缝对接MaxCompute,支持外部表透明加速查询和元数据自动导入,简化数据入湖入仓。
-
半结构数据分析:原生支持半结构化JSON数据类型,优化存储和分析效率。
-
原生实时数仓:针对实时数仓特性,支持高并发实时写入与更新,事务隔离与原子性,数据写入即可查。
-
企业级运维能力:支持计算负载、访问权限等细粒度管控,提供丰富的监控和告警指标,支持计算资源弹性扩展和系统热升级。
-
生态与可扩展性:兼容PostgreSQL生态,与大数据计算引擎及大数据智能研发平台DataWorks无缝打通,无需额外学习即可上手开发。
Hologres 广泛应用于实时数据中台建设、精细化分析、自助式分析、营销画像、人群圈选、实时风控等场景,帮助企业实现数据的实时处理和分析,从而做出更快速、更精准的业务决策。
由于Hologres是一个实时数据仓库引擎,通常用于企业级的数据分析和处理,因此它不会有像一般应用程序那样的“demo”。不过,我可以提供一个简单的示例来展示如何使用Hologres进行数据查询和更新。
示例
假设你已经在阿里云上部署了Hologres,并且已经创建了一个数据库和表,表结构如下:
CREATE TABLE sales_data (
sale_id INT PRIMARY KEY,
product_id INT,
sale_date DATE,
quantity_sold INT,
revenue DECIMAL(10,2)
);
这个表用于存储销售数据,包括销售ID、产品ID、销售日期、销售数量和收入。
插入数据
-- 插入一条销售记录
INSERT INTO sales_data (sale_id, product_id, sale_date, quantity_sold, revenue)
VALUES (1, 101, '2024-03-13', 10, 1000.00);
查询数据
-- 查询特定日期的销售记录
SELECT * FROM sales_data WHERE sale_date = '2024-03-13';
-- 计算特定产品的销售总额
SELECT product_id, SUM(revenue) AS total_revenue
FROM sales_data
WHERE sale_date BETWEEN '2024-03-01' AND '2024-03-31'
GROUP BY product_id;
更新数据
-- 更新特定销售记录的收入
UPDATE sales_data
SET revenue = revenue * 1.1
WHERE sale_id = 1;
删除数据
-- 删除特定销售记录
DELETE FROM sales_data WHERE sale_id = 1;
这些示例展示了如何在Hologres中执行基本的数据库操作,包括插入、查询、更新和删除数据。在实际的企业环境中,这些操作可能会涉及到更复杂的数据分析和处理任务。