大家好!我是涵姐又和大家见面了。
本期继续上期整式的乘法和因式分解章节中乘法公式里的考点2——完全平方公式
完全平方公式是进行代数运算与变形的重要的知识基础,是整式的乘法和因式分解中常用到的公式。该考点考察方向主要是对完全平方公式原型的理解和灵活运用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)
下面我们从完全平方公式定义,公式表示和基础公式推演出来结论等方面详细讲解,文章结尾有两道练习题(检测一下有没有学会)
一、完全平方公式的定义
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
二、完全平方公式基础公式
(a+b)=a+2ab+b(a-b)=a-2ab+b
公式特征:两个公式的左边都是一个二项式的完全平方,右边都是二次三项式,其中两项是左边二项式两项的平方和,一项是这两项积的2倍。
这个公式记忆小窍门:首平方,尾平方,积的2倍在中央。
重点提示:a和b可以是单项式或者多项式,也可是一次幂或者n次幂。
三、完全平方公式推导公式(考试就考这个)
推导公式1:a+b=(a+b)-2ab
推导公式2:a+b=(a-b)+2ab
推导公式3:(a+b)+(a-b)=2(a+b)
推导公式4:(a+b)-(a-b)=4ab
推导公式5:a+b+c-ab-ac-bc={(a-b)+(b-c)+(c-a)}/2
推导公式6:(a+b+c)=a+b+c+2ab+2ac+2bc
推导公式7:(a+b)=(a+b)(a+b)=a(a+b)+b(a+b)=a+ab+ab+b
推导公式8:(a-b)=(a-b)(a-b)=a(a-b)-b(a-b)=a-ab-ab+b
常用结论:
(a-b)=a-2ab+b及(a-b)>=0,可得a-2ab+b>=0,于是a+b>=2ab
特别注意:(-a-b)=(a+b);(a-b)=(b-a)
完全平方公式该讲的和不该讲的都讲了,下面给大家来两道题试一下手。
练习题1:(3a+b)
练习题2:(-2x-3y)
答案到时公布到评论区里,具体解题过程不懂的可以给我留言。