- 博客(6)
- 收藏
- 关注
原创 矩阵分析——线性空间与线性映射(六)
矩阵分析——线性空间与线性映射(六)矩阵的等价与相似定义(矩阵等价)称为等价,如果存在可逆矩阵,使(如果一个矩阵可以经过一系列的初等行列变换变成另外一个矩阵,则称这两个矩阵等价)从线性映射(几何)角度来看矩阵等价引入矩阵等价的动机:是用来刻画矩阵的初等行列变换的 p看作是入口基q看作是出口基 视为线性映射 线性映射A在入口基p和出口...
2021-01-17 15:24:44 1110 1
原创 矩阵分析——线性空间与线性映射(五)
矩阵分析——线性空间与线性映射(五)矩阵与标准线性空间之间的线性映射,两事物的等同性(矩阵这个具体的事物和映射这个抽象的事物,通过以下例子验证它是等同的 从矩阵出发造一个映射)给定矩阵,通过右乘到向量可决定线性映射A: 问题:反之?给到A造一个映射, 给到映射能不能造一个A呢?记的标准基:造矩阵。的映射沿着标准基展开 x=[]x(这个加是Fn域中的加)定义:线性映射的矩阵表示 给定线性映射: A: V是n维...
2021-01-16 14:49:14 1716
原创 矩阵分析——线性空间与线性映射(四)
矩阵分析——线性空间与线性映射(四)定义:(子空间)设V是F上的线性空间是非空子集,若(1)对加法封闭 (2)对数乘封闭 则称W是V的一个子空间。(子空间W本身按V中原有的加、乘也构成线性空间。)例(向量组的生成子空间及子空间的生成组) 是向量组...
2021-01-15 16:24:34 850
原创 矩阵分析——线性空间与线性映射(三)
矩阵分析——线性空间与线性映射(三)哈工大严老师矩阵分析笔记命题:(维数的唯一性) 设,……及,……分别是V的两个基则。定理:基(坐标系)实现了抽象线性空间到标准线性空间之间的一一对应。(一一对应的好处,在数学上两个东西满足一一对应,则这两个东西是一样的,一个问题翻译成另一个问题也不增加什么也不减少什么,笛卡尔就是将几何问题翻译成代数问题)映射:满足条件(1)和条件(2)的映射称为一一对应。(先证明是映射再证明满足两条性质) (1)...
2021-01-06 15:36:23 819
原创 矩阵分析——线性空间与线性映射(二)
矩阵分析——线性空间与线性映射(二)哈工大严老师矩阵分析笔记定义(向量组及向量组拼成的抽象矩阵)设V是F上的线性空间V中的有限序列,......称为V中的一个向量组,向量组按顺序排成的行称为向量组拼成的抽象矩阵[,.....] (把V中的元素拼成矩阵,对解决问题非常有帮助)上一篇写了线性空间可是引用线性空间干什么用? 我们把熟悉的线性空间的笛卡尔的解析几何的方法(就像我们生活的三维几何空间建立x,y,z坐标系),把它抽象到一般的线性空间的框架下,解析几何的核心是建立坐标系,把几何的.
2021-01-05 19:54:32 540 3
原创 矩阵分析——线性空间和线性映射(一)
矩阵分析——线性空间和线性映射(一)哈工大严老师矩阵分析笔记线性空间定义:给定非空集合和域,若存在映射:(从V和V自己的卡氏集到V的映射 任取V1和V2就可以算出一个值且算出的这个值还在V中) 则称为上的加法。(要习惯把运算比方成加法 看作是映射,并且是二元映射,通常) ...
2021-01-05 10:15:38 1501 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人