矩阵分析——线性空间与线性映射(二)

本文是哈工大严老师的矩阵分析笔记,深入探讨线性空间中的向量组、抽象矩阵、线性相关性和线性无关性。解释了如何将解析几何的思想迁移到抽象线性空间,以及向量组的线性表示和极大线性无关子组的概念。还介绍了线性表示的传递性、向量组的秩和基的定义,阐述了在抽象线性空间中建立坐标系的重要性。
摘要由CSDN通过智能技术生成

矩阵分析——线性空间与线性映射(二)

哈工大严老师矩阵分析笔记

定义(向量组及向量组拼成的抽象矩阵)

设V是F上的线性空间V中的有限序列\alpha _{1}\alpha _{2}......\alpha _{n}称为V中的一个向量组,向量组按顺序排成的行称为向量组拼成的抽象矩阵[\alpha _{1},\alpha _{2}.....\alpha _{n}] (把V中的元素拼成矩阵,对解决问题非常有帮助)

上一篇写了线性空间可是引用线性空间干什么用?

  我们把熟悉的线性空间的笛卡尔的解析几何的方法(就像我们生活的三维几何空间建立x,y,z坐标系),把它抽象到一般的线性空间的框架下,解析几何的核心是建立坐标系,把几何的量变成代数的量,把这个思想迁移到一般的抽象的线性空间里面去。核心是在抽象的线性空间里面什么样的向量组有资格类比几何空间里面的坐标系。这样就发展出了线性相关性的理论。

向量组\alpha _{1},\alpha _{2}.....\alpha _{p}      抽象矩阵[\alpha _{1},\alpha _{2},.....\alpha _{p}](是一个一行P列的矩阵,里面的元素是向量空间中的元素)也可以拼成p行1列的矩阵,如果处理行向量就横着拼,处理列向量就竖着拼。

定义:向量组的线性相关性(模拟坐标系的和核心概念)

          (1) 向量组\alpha _{1}\alpha _{2}.......\alpha _{p}线性相关,如果存在不全为零的P个数k_{i}\in F,i=1.....p使得\bg_white \alpha _{1}k_{1}+\alpha _{2}k_{2}+.....\alpha _{p}k_{p}= 0,这个0 是线性空间V中的零向量。

            由非零的线性组合,组合出来的结果为零向量称为线性相关.(*不成立即\bg_white \alpha _{1}k_{1}+\alpha _{2}k_{2}+.....\alpha _{p}k_{p}\neq 0

          (2)向量组

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值