老徐写在前
均值不等式作为这几年联考命题的热点之一,是求最值问题最有利的工具之一。在形式上,均值不等式比较简单,但是其变化多样,使用灵活,在使用时尤其要注意“一正、二定、三相等”本篇文章,老徐就给各位考考生汇总整理一份均值不等式的解题方法,希望各位考生能好好理解体会。
01基本表达式


02历年真题解题方法总结
解题方式之一:直接套用。

解题方式之二:拆项。(必须拆次数较小的项,而且一定要拆成相等的项)

点评:上述这题,因为2x的次数较小,所以我们要拆2x这一项,而且必须要拆成相等的项,也就是2x拆成x+x,而不能拆成其他的组合。
解题方式之三:整体代换。

点评:上述这题,我们把2a当做一个整体,然后再去运用两项均值不等式,这就是均值不等式的灵活之处。
解题方式之四:拼凑项(比较难想到)。


点评:上述这题,我们把x²拆成x×x,1-x变成2-2x,目的就是为了让x+x+2-2x为定值,这样才能利用三项的均值不等式。
03均值不等式的陷阱
均值定理的应用条件总结:一正二定三相等。
一正:所有项必须都是正数。
二定:当其和为定值时,其积有最大值;当其积为定值时,其和有最小值。
三相等:当且仅当各项相等时,等号成立。
尤其注意“三相等”,如果一正、二定均满足,一定要确保“三相等”。

点评:上述这题,条件(2)中由于“三相等”无法取到,所以也就不存在最值,这是均值不等式的一大陷阱,考生要尤其注意。
04均值不等式专题训练




05均值不等式专题训练答案解析




