本书简介:《实证资产定价:股票横截面收益》是对实证资产定价研究领域重要的成果的全面综述。首先,本书通过对详细案例所示结果的实施和解释的深入讨论,对当下广泛使用的计量经济学方法进行了全面阐述。其次,本书的后半部分利用这些方法证明在股票收益中观察到的显著的结论。这些已经被证明的现象形成了大量投资策略和当代实证资产定价研究的基础。后,本书还包括了以下内容:(1)关于在股市中被发现的既有模型的驱动力讨论;(2)一套广泛的、可供从业者和学者参考的研究结果;(3)大量当代和基础研究的参考文献。本书是资产定价和投资组合管理研究生阶段课程的理想教科书,也是金融经济领域科研工作者和从业者不可缺少的参考资料。
核心收获:
- 样本:在这本书中所用到的每一个统计方法否是基于面板数据的。面板中每一条都是反映了一个个体和时间的组合。
- 通常有两种技术被用来处理实证资产定价中的极端值问题。第一个是缩尾技术,即简单地将一个大于或者小于某个确定值的变量值设定为这个确定值。第二个是截尾技术,即简单地将被认定为是极端值的变量值设定为缺失,即移除极端值。
- 实证资产定价研究人员常常利用Newey和west(1987)提出的方法,即调整估计值的标准误差来降低自相关性和异方差性的影响。
- 描述性统计的目标是对所使用的数据和样本的特征有一个全面而扼要的了解。
- 相关性系数分析可以让我们能够初窥研究中所使用的变量之间的关系。
- 在实证资产定价研究中,很多变量是被用来捕获样本元素的持续性特征。这意味着通过变量所捕获的元素特征在一定时期内被合理假定是稳定的。
- 组合分析是实证资产定价中一种被广泛使用的统计方法。它的目标是检验横截面上两个及以上变量之间的关系。组合分析频繁地被应用于检验一个或者多个变量对股票未来收益的预测能力。其中还包括单变量排序、双变量序贯排序和双变量独立排序组合分析。
- Fama和MacBeth提出的回归分析法是检验变量之间关系的另一种统计方法,其允许我们在检验变量之间关系时控制大量的其他变量,从而可以检验自变量与一个或者多个因变量在平均时期中的横截面关系。其缺点在于需要对自变量和因变量关系的性质做出假设,在多数情形下,这种关系都被假设为线性的,因此就可以采用OLS回归(或可能的加权最小二乘回归)来完成周期性横截面分析
- CRSP数据库是一个在实证资产定价研究中股票价格和收益数据的主要来源。
- CAPM风险模型常被用于在组合分析中检验不同差异组合是否产生了正的异常收益α
- 证券β估计的最常用方法是运行股票历史超额收益对市场因子的回归,然后将斜率系数当做股票β的估计值。CAPM模型发现β和期望超额收益的关系可以用一条斜率等于市场风险差价,截距为0的线来描绘。但是事实上,实证结果未能支持这结论,并有文章为此做出了解释。
- 规模效应指的是大市值股票的收益常常比小市值股票的收益低,其中Fama和French(1992,1993)的文章是最常被引用的。建立在这个发现上,他们设计并构造了一个组合,该组合的收益拟合了与规模效应相关的收益,进一步提出这个组合的收益作为一个风险因子,记为“小减大”(SMB)
- 账目市值比与股票期望收益之间具有很强的正向横截面相关关系,这个因子被称为HML
- Fama-French三因子模型(市场因子、规模因子、价值因子)在解释资产组合收益方面比CAPM表现更优
- 动量(Mom)-即根据月份t-11到月份t-1的股票收益率计算所得,与股票在月份t+1的收益之间存在横截面上的正相关关系,该现象由Jegadeesh和Titman(1993)论文中所记载,即动量效应,在空中了期望收益、β、账面市值比之间的关系后依旧成立。
- 在风险模型中引入动量因子MOM来解释资产收益已被广为使用,因此有了包括Fama和French(1993)以及Carhart(1997)的四因子(FFC)模型,该模型包括MKT、SMB、HML(价值)和MOM。
- Jegadeesh(1990)和Lehmann(1990)提出了短期反转效应,指的是在过去的股票收益会与未来一周或是一个月的股票收益之间具有负的横截面关系
- 反转因子模拟组合被称为STR
- Amihud(2002)的方法是最通用的流动性度量方法,即使用买卖价差。非流动性与股票未来收益之间有着强烈的正向横截面关系
- Paster和Stambaugh(2003)提出了流动性因子PSL的构建,PSL因子模拟组合能产生大量的长期平均收益
- 偏度是测量起来非常困难的股票性质,因为大多数度量没有表现出较高的持续性。
- 特质波动之谜:用周期性股票超额收益对因子模拟组合收益的时间序列回归得到的残差标准差来衡量特质波动。实证分析结果发现,特质波动和股票未来收益之间存在负界面关系。
- 看跌期权和看涨期权隐含波动率之间的差异与股票未来收益之间存在正相关性
- 其他股票收益率预测量:Harvey、Liu和Zhu(2015)提出了与横截面定价效应相关的316个因子,其他人总结出更多的因子。其中资产增长、投资者情绪、投资者关注度、观点分歧、盈利能力和投资、对博彩型股票的投资需求是比较常见的