edger多组差异性分析_edgeR基因表达差异分析

这篇博客详细介绍了如何使用edgeR进行多组差异性分析,包括读取数据、构建DGEList对象、过滤低表达基因、CPM转换、自动过滤、归一化、负二项式模型和计算差异基因等步骤,强调了归一化和过滤在分析中的重要性,并提供了MDS图形展示样本聚类的方法。
摘要由CSDN通过智能技术生成

edgeR基因表达差异分析

官方文档总结

==注意⚠️:== - edgeR设计用于实际读取计数。我们不建议将预测的转录本丰度输入到edgeR而不是实际计数中。

读取read数

可以使用read.table(),read.delim(),如果文件比较多,readDGE(files, columns=)来一次性读取多个文件。注意,readDGE()需要指定两列,一列用于计数,一列用于基因标识符

x

DGEList对象、构建分组

DGEList是一个可以包含多种内容和统计的列表。DGEList至少需要的元素:counts、samples(包含group分组信息和lib.size文库大小),counts用来存放表达矩阵,samples用来标记样本信息和库的大小,group声明组别 。

# 构建一个含有组别标记的DGEList

y

group

y

DGEList中分组是必要的,也可以添加其他信息进去,例如lane道,基因长度,基因注释等信息 一个注释过的DGEList

过滤,删除低表达基因

低表达基因不仅用不到,而且会干扰结果,所以要去除在任何样本中都没有足够多的序列片段的基因应该从下游分析中过滤掉,因为: 1. 低表达没有生物学意义 2. 去除低表达数据可以对数据中均值-方差关系有更精确的估计 3. 减少了观察差异表达下游分析中的运算量

edgeR包中的filterByExpr函数提供了自动过滤基因的方法,可保留尽可能多的有足够表达计数的基因。此函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值