快速傅里叶变换 python_短时傅里叶变换(Short Time Fourier Transform)原理及 Python 实现...

短时傅里叶变换(Short Time Fourier Transform, STFT)是语音信号处理的重要工具,通过将长信号分成多个短段并计算每个段的傅里叶变换来获取信号的时间和频率分布。在Python中,可以使用numpy库结合汉明窗函数实现STFT。本文介绍了STFT的数学定义,并提供了一个Python示例,展示了如何计算和展示STFT的功率谱。" 111896672,10540882,在 CentOS 中配置和管理 NTP 服务器,"['Linux系统', '网络服务', '时间同步', '安全配置']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原理

短时傅里叶变换(Short Time Fourier Transform, STFT) 是一个用于语音信号处理的通用工具.它定义了一个非常有用的时间和频率分布类, 其指定了任意信号随时间和频率变化的复数幅度. 实际上,计算短时傅里叶变换的过程是把一个较长的时间信号分成相同长度的更短的段, 在每个更短的段上计算傅里叶变换, 即傅里叶频谱.

短时傅里叶变换通常的数学定义如下:

L3Byb3h5L2h0dHBzL2ltYWdlczIwMTguY25ibG9ncy5jb20vYmxvZy83NTcyMDUvMjAxODA3Lzc1NzIwNS0yMDE4MDcwODE2MzgzMzk3OC0xNzg2NzU0Mzg2LnBuZw==.jpg

其中,

L3Byb3h5L2h0dHBzL2ltYWdlczIwMTguY25ibG9ncy5jb20vYmxvZy83NTcyMDUvMjAxODA3Lzc1NzIwNS0yMDE4MDcwODE2Mzk0MTE4Mi01MDk1ODYzMTQucG5n.jpg

DTFT (Decrete Time Fourier Transform) 为离散时间傅里叶变换. 其数学公式, 如下所示:

L3Byb3h5L2h0dHBzL2ltYWdlczIwMTguY25ibG9ncy5jb20vYmxvZy83NTcyMDUvMjAxODA3Lzc1NzIwNS0yMDE4MDcwODE2NDU0NjA2Mi0zNTQ0MTg5MTEucG5n.jpg

其中, x(n) 为在采样数 n 处的信号幅度. ω~ 的定义如下:

L3Byb3h5L2h0dHBzL2ltYWdlczIwMTguY25ibG9ncy5jb20vYmxvZy83NTcyMDUvMjAxODA3Lzc1NzIwNS0yMDE4MDcwODE2NDcxMDI0NS0xMDY1OTE5ODIucG5n.jpg

实现时, 短时傅里叶变换被计算为一系列加窗数据帧的快速傅里叶变换 (Fast Fourier Transform, FFT),其中窗口随时间 “滑动” (slide) 或“跳跃” (hop) 。

Python 实现

在程序中, frame_size 为将信号分为较短的帧的大小, 在语音处理中, 通常帧大小在 20ms 到 40ms 之间. 这里设置为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值