闪闪发亮的小星星
这个作者很懒,什么都没留下…
展开
-
数字滤波器应用介绍
线性滤波器FIR ,会引起恒定延迟,通过补零的方式补偿非线性滤波器IIR,会引起频率相关的延迟,通过零相位延迟filtfilt补偿从信号中去除不需要的频谱时,通过滤波和补偿实现。如果需要去除的频率与采样率相差甚远,比如4kHz 与100Hz, 可通过 低通滤波->补偿->降采样–> 滤波 补偿 -->上采样还原的方法。*降采样前一定要先低通滤波为了防止混叠。原创 2025-05-12 18:57:46 · 63 阅读 · 0 评论 -
自适应信号处理任务(过滤,预测,重建,分类)
【代码】自适应信号处理任务(过滤,预测,重建,分类)原创 2025-04-03 17:33:56 · 385 阅读 · 0 评论 -
互功率谱 cpsd
互功率谱(Cross-Power Spectral Density, CPSD)是信号处理中用于描述两个信号在频域中相关性的工具。它表示两个信号在不同频率下的功率分布及其相位关系,广泛应用于模态分析、系统辨识和信号匹配等领域。原创 2025-03-19 15:04:20 · 317 阅读 · 0 评论 -
互相关-信号增强
经常提到通过互相关方法进行信号增强 ,抑制噪声。为什么呢?下面是一些解释。原创 2025-03-19 14:47:36 · 84 阅读 · 0 评论 -
谱熵(Spectral Entropy)
谱熵是基于信号功率谱的概率分布计算的。具体步骤如下:计算信号的功率谱密度(PSD)。将功率谱密度归一化为概率分布。计算概率分布的熵。原创 2025-01-20 18:29:33 · 598 阅读 · 0 评论 -
功率密度谱
方法 1:周期图法# 使用 周期方法计算功率谱密度# 示例信号sample_rate = 1000 # 采样率# 计算功率谱密度# 绘制功率谱密度plt.show()方法2 welch# 使用 Welch 方法计算功率谱密度# 计算功率谱密度# 绘制功率谱密度plt.show()原创 2025-01-20 18:09:34 · 177 阅读 · 0 评论 -
matlab时频分析库
time frequency gallery原创 2025-01-02 11:12:59 · 244 阅读 · 0 评论 -
测量信号相似性、测量延迟并对齐、比较频率
如何比较具有不同长度或不同采样率的信号?如何在测量中发现存在信号还是只存在噪声?两个信号是否相关?如何测量两个信号之间的延迟(以及如何将它们对齐)?如何比较两个信号的频率成分?也可以在信号的不同段中寻找相似性以确定信号是否为周期性信号。原创 2025-01-02 11:03:08 · 146 阅读 · 0 评论 -
matlab 设计滤波器
matlab 菜单栏 APP - 滤波器设计。原创 2024-12-31 17:57:21 · 271 阅读 · 0 评论 -
matlab-数字滤波器设计与实战
零相位响应是一种理想的滤波器特性,能够完全避免相位失真,但由于其非因果性和计算复杂度,通常只适用于离线处理或非实时系统。在实时系统中,通常需要在相位失真和延迟之间进行权衡,选择线性相位或非线性相位滤波器。原创 2024-12-30 18:13:49 · 317 阅读 · 0 评论 -
F-K变换法
f-k变换实质上是一种二维傅里叶变换。在时间域上,对一道地震信号做傅里叶变换,可以得到在时间上不同频度(称为频率)的 波动组分的振幅和相位信息。同样地,在空间上,我们也可以对多道地震信号做类似傅里叶变 换的数值变换,得到在空间上不同频度(称为波数)的波动组分的振幅和相位信息。进行这两种变换后,便可以分析一个炮集记录在频率-波数域的能量分布情况。原创 2024-12-05 15:33:56 · 590 阅读 · 1 评论 -
抽点滤波与差分
先抽点后差分 与 先 差分后抽点,在幅值上有点区别,在相位角上没区别。先抽点后差分的幅值小一点。差分带来的影响是: 与原来数据角度相差90 数值变化。抽点 滤波: [::2]原创 2024-11-06 13:24:32 · 74 阅读 · 0 评论 -
拉东变换参考
参考:常用于 医学成像。原创 2024-11-04 16:35:40 · 60 阅读 · 0 评论 -
级联滤波器
级联滤波器(Cascade Filters)是通过串联多个滤波器来获得更复杂的频率响应。每个滤波器的输出作为下一个滤波器的输入,这种方法用于精确控制系统的频率响应,比如在特定频率段获得更陡峭的衰减或组合多种滤波效果(如低通、高通、带通等)。使用 scipy.signal.butter 设计滤波器,如低通、高通或带通滤波器。假设我们设计两个滤波器,一个是低通,一个是高通。级联多个传递函数,通过串联多个滤波器系统来实现更复杂的滤波效果。设计多个滤波器(低通、高通、带通等)并获得其滤波器系数。原创 2024-10-18 17:08:04 · 449 阅读 · 0 评论 -
傅里叶变换的直观解释
拉式变换很重要的原因是,很多系统,比如RLC电路,弹簧上的质量 以及普遍的控制系统,会产生正弦和指数输出,需要拉式变换去分析他们。积分无穷大,说明原始函数里的参数是 w=3 alpha=-0.5,当 w= pi 时,积分为无穷大,否则为0。当w=0时,cos(wt)=1 ,F(0)=左图中f(t) 图形下的面积。如果W 不是4个频率中的一个,则只能得到0,正区域和负区域会相互抵消。傅里叶变换的强大之处,能从原本的函数中扫描出正弦(余弦?F(w)是个复数有实部和虚部两部分,由实部和虚部两部分。原创 2024-07-16 18:34:33 · 188 阅读 · 0 评论 -
桥梁模态识别
在信号处理、电子工程和声学中,FRF代表“频率响应函数”。这是描述系统或设备如何响应不同频率输入的数学表示。FRF(频率响应函数)是系统输入频率(通常以赫兹为单位)与输出响应幅度(通常以分贝或线性单位为单位)之间的关系。它提供了一种理解系统行为的方式,因为它揭示了系统如何放大或衰减不同频率的信号以及引入相位移。FRF通常以图表形式表示,称为“频响曲线”或“幅度响应图”。横轴表示频率,纵轴表示幅度。该图表显示系统响应随频率变化的方式。FRF的一些关键方面包括:增益:FRF描述系统的增益或放大。原创 2024-06-05 16:37:17 · 547 阅读 · 0 评论 -
提取时频脊线
同步压缩是一种在数字信号处理中常用的技术,它的目的是对信号进行压缩,同时保留信号中的时间结构信息。这种压缩方式非常适用于需要实时传输、存储和处理的信号,如音频、视频、传感器数据等。常用方法:小波变换(Wavelet Transform):小波变换在信号处理中被广泛应用,它能够将信号分解成不同尺度和频率的成分,从而允许对信号进行时频分析。通过选择适当的小波基函数和压缩算法,可以实现同步压缩。原创 2024-05-31 17:21:19 · 902 阅读 · 0 评论 -
关于窗函数以及汉宁窗的设计
窗函数(英语:window function)在信号处理中是指一种除在给定区间之外取值均为0的实函数。譬如:在给定区间内为常数而在区间外为0的窗函数被形象地称为矩形窗。任何函数与窗函数之积仍为窗函数,所以相乘的结果就像透过窗口“看”其他函数一样。窗函数在频谱分析、滤波器设计、波束形成、以及音频数据压缩(如在Ogg Vorbis音频格式中)等方面有广泛的应用。原创 2024-05-13 13:30:37 · 114 阅读 · 0 评论 -
同步压缩-提取时频背脊线
同步压缩是一种在数字信号处理中常用的技术,它的目的是对信号进行压缩,同时保留信号中的时间结构信息。这种压缩方式非常适用于需要实时传输、存储和处理的信号,如音频、视频、传感器数据等。常用方法:小波变换(Wavelet Transform):小波变换在信号处理中被广泛应用,它能够将信号分解成不同尺度和频率的成分,从而允许对信号进行时频分析。通过选择适当的小波基函数和压缩算法,可以实现同步压缩。原创 2024-05-08 17:43:38 · 552 阅读 · 0 评论 -
mset-非线性状态评估算法
计算正常状态与观测状态的残差,设定一个阈值,通过比较残差与阈值的大小,估计是正常/异常。其中,用欧式距离代替 向量点乘。具体公式及推理过程见参考文献。原创 2024-05-08 09:31:54 · 272 阅读 · 0 评论 -
瞬态瑞丽波频散曲线提取
【代码】瞬态瑞丽波频散曲线提取。原创 2024-04-16 18:23:50 · 185 阅读 · 0 评论 -
同步压缩理论
在频率方向进行能量重新分配(分配到中心)原创 2024-04-10 18:40:01 · 106 阅读 · 0 评论 -
时频分析实战-时频脊线
此示例说明如何执行和解释基本的时频信号分析。在实际应用中,许多信号是非平稳信号。这意味着其频域表示(其频谱)随时间变化。该示例讨论使用时频方法相对于信号的频域或时域表示的优势。它回答了一些基本问题,例如:信号中何时会出现特定频率分量?如何提高时间或频率分辨率?如何锐化分量的频谱或提取特定模式?如何在时频表示中测量功率?如何可视化信号的时频信息?如何在感兴趣信号的频率成分里找到间歇性干扰?也可以使用连续小波变换来执行信号的时频分析。原创 2024-03-15 10:02:58 · 557 阅读 · 0 评论 -
生成二维码-读取二维码-动态二维码
【代码】生成二维码-读取二维码-动态二维码。原创 2024-03-12 11:02:14 · 103 阅读 · 0 评论 -
小波散射网络及其应用
小波变换的散射算子(Scattering operators)[41],能提取出原始信息在弹性形变、仿射变换中。年后,Mallat 又提出了基于小波变换的小波散射网络这一新型网络结构,该网络主要是基于。和低频特征信息,再将低频信息进行非线性平稳变换以保证其形变不变性[42],利用平均算子。小波变换和非线性变换的过程逐步得到原始信息的特征[43]。小波散射网络首先将原始信息通过预先设定好的小波滤波器,分层次提取高频。将高频信息转化为低频信息,期间丢失的高频信息通过散射算子恢复,通过不断地循环进行。原创 2024-03-11 18:29:15 · 1069 阅读 · 0 评论 -
用自编码器检测小波散射异常 MATLAB
小波散射LSTM自编码器卷积自编码器卷积自编码器比LSTM自编码器快!原创 2024-03-07 16:43:49 · 186 阅读 · 0 评论 -
认识小波-DWT CWT Scattering
大家好。在本次介绍性课程中,我将介绍一些基本的小波概念。我将主要使用一维示例,但相同的概念也可以应用于图像。首先,我们回顾一下什么是小波。现实世界的数据或信号经常表现出缓慢变化的趋势或瞬态波动。另一方面,图像具有被边缘或对比度突然变化中断的平滑区域。**这些突然的变化通常是数据中最有趣的部分,无论是在感知上还是在它们提供的信息方面。傅里叶变换是数据分析的强大工具。然而,它并不能有效地表示突变。**其原因是傅立叶变换将数据表示为正弦波之和,这些正弦波在时间或空间上不局域化。这些正弦波永远振荡。原创 2024-03-06 14:22:18 · 385 阅读 · 0 评论 -
matlab处理时间序列
小波散射网络 , 包含小波变换层,非线性层、池化层。第一层平均,丢失高频率信息。原创 2024-03-06 10:45:39 · 94 阅读 · 0 评论 -
2.3 离散时间系统的差分方程
离散时间差分方程描述和求解原创 2024-02-27 14:19:44 · 119 阅读 · 0 评论 -
线性时不变系统-线性卷积
正弦序列。原创 2024-02-27 13:21:01 · 114 阅读 · 0 评论 -
数字信号处理教程学习笔记1-第2章时域中的离散信号和系统
模拟信号和数字信号分别是啥样的,有啥区别模拟信号: 连续变化的信号,其数值在一段时间内可以无限制地取任意值数字信号:离散的信号,它的数值在一段时间内只能取有限个特定值第一章习题1.1 设一组电压值为 x = [- 0.3,0.5,1,-2,3,-4],经过一个量化步长为 0.15 的量化装置,求量化后的整数和它们对应的量化电压,并求出其绝对误差和相对误差。原创 2024-01-12 18:37:11 · 230 阅读 · 0 评论 -
EMD+包络谱故障诊断
EMD是一种信号处理方法,用于将信号分解成多个本征模态函数(Intrinsic Mode Functions,IMF),每个IMF代表信号中的一个固有振动模式。它通过对信号包络谱的谱线斜率进行测量,反映了信号包络的变化程度。结合VMD和包络谱峭度,可以提取故障声音中的有用特征。计算包络谱: 对每个包络信号计算其频谱,并计算包络谱峭度。采集故障声音数据: 首先,收集包含故障声音的数据,例如机械设备的运行状态中产生的声音。特征组合: 将每个IMF的包络谱峭度作为特征,可以将这些特征组合成一个特征向量。原创 2024-01-08 16:59:45 · 695 阅读 · 0 评论 -
奇异值分解
这个例子中,我们选择了 ( k = 2 ),即保留两个最重要的奇异值,从而实现了对矩阵的降维。构建新矩阵: 用选定的特征构建一个新的矩阵,即 ( A_k = U_k \Sigma_k V_k^T ),其中 ( U_k, \Sigma_k, V_k^T ) 是相应的前 ( k ) 个列向量或对角元素。选择主要特征: 将奇异值按照大小排序,保留最大的 k 个奇异值对应的列向量,其中 ( k ) 是降维后的维度。计算SVD: 对给定的矩阵 ( A ) 进行奇异值分解,得到 ( U, \Sigma, V^T )。原创 2024-01-08 16:17:17 · 1183 阅读 · 0 评论 -
维纳滤波-python实现
然后,我们添加了高斯白噪声来模拟受噪声污染的信号。最后,我们使用wiener函数来对受噪声污染的信号进行维纳滤波,得到恢复的信号。维纳滤波器的设计需要估计信号和噪声的功率谱密度,以及信号和噪声的互相关函数。根据这些估计值,可以计算出维纳滤波器的频谱,并将其应用于受噪声污染的信号,从而恢复出原始信号。维纳滤波的基本原理是,根据信号和噪声的统计特性,通过频域上的滤波来最小化恢复信号与原始信号之间的均方误差。其中,H(f)是信号的频谱,N(f)是噪声的频谱,S(f)是原始信号的频谱,G(f)是恢复信号的频谱。原创 2023-12-13 17:22:53 · 971 阅读 · 0 评论 -
拉普拉斯变换
通过拉普拉斯变换,可以将微分方程转换为传递函数形式,便于系统的分析和设计。总的来说,拉普拉斯变换在工程和科学领域中是一种非常有用的工具,它可以简化复杂系统的分析和设计过程,使得工程师和科学家能够更好地理解和处理微分方程、信号和系统。通过拉普拉斯变换,可以将微分方程描述的电路转换为代数方程,方便进行电路分析和设计。拉普拉斯变换在信号处理和控制理论中有着重要的作用。解决边界值问题:拉普拉斯变换在解决边界值问题(如热传导、振动等)中也有着重要的作用,通过将微分方程转换为代数方程,可以更容易地求解这些问题。原创 2023-11-29 15:58:29 · 415 阅读 · 0 评论 -
geatpy-遗传算法
同样是求解案例1的问题,这里我们在定义目标函数时不加ea.Problem.single标记。这意味着evalVars()传入的是一个Numpy ndarray二维数组。原创 2023-10-30 15:36:10 · 198 阅读 · 0 评论 -
正则表达式以及 pattern 的撰写方式
在Python中,可以使用re模块来进行正则表达式的撰写和匹配。其中,r表示原始字符串,可以避免转义字符的问题。需要注意的是,在定义正则表达式模式时,可以使用一些特殊字符和语法规则,例如点号(.)表示任意字符,星号(另外,还可以使用re模块的一些特殊方法和标志来进一步定制正则表达式的匹配方式,例如忽略大小写、多行匹配等。以上是一个基本的正则表达式撰写方法示例,更复杂的正则表达式可以根据具体需求进行构建。在实际使用中,可以结合re模块的各种函数和方法,灵活地处理字符串匹配和替换的需求。原创 2023-10-30 11:09:51 · 467 阅读 · 0 评论 -
激活函数作用以及 sigmoid和softmax
激活函数在神经网络中起着非常重要的作用,它的主要功能是引入非线性性质,使得神经网络可以学习和表示更加复杂的模式和关系。控制神经元的激活程度:激活函数可以控制神经元在不同输入值下的激活程度。例如,ReLU(Rectified Linear Unit)函数在输入大于零时被激活,而在输入小于等于零时被抑制。需要注意的是,选择合适的激活函数对于神经网络的训练和性能非常重要。不同类型的激活函数适用于不同的问题,应根据具体情况进行选择。此外,还需要注意梯度消失和爆炸的问题,避免梯度无法传播或引起数值不稳定性。原创 2023-10-27 16:01:00 · 357 阅读 · 0 评论 -
knn相似性搜索
【代码】knn相似性搜索。原创 2023-10-26 14:55:45 · 102 阅读 · 0 评论 -
损失函数和评估函数
损失函数是用于衡量模型在训练过程中预测结果与实际结果之间的差异的函数。它通过计算模型的预测值与实际值之间的距离或差异来 quantitatively 表示模型的性能好坏。损失函数通常被用作优化算法(如梯度下降)的目标函数,通过最小化损失函数来调整模型参数,使得模型的预测结果更加接近实际结果。评估函数也是用于衡量模型性能的指标,但与损失函数不同,评估函数是在模型训练完成后对模型进行综合评价的指标。评估函数可以用于比较不同模型的性能,或者判断模型是否满足特定应用需求。原创 2023-10-25 14:07:05 · 1064 阅读 · 0 评论