闪闪发亮的小星星
这个作者很懒,什么都没留下…
展开
-
抽点滤波与差分
先抽点后差分 与 先 差分后抽点,在幅值上有点区别,在相位角上没区别。先抽点后差分的幅值小一点。差分带来的影响是: 与原来数据角度相差90 数值变化。抽点 滤波: [::2]原创 2024-11-06 13:24:32 · 10 阅读 · 0 评论 -
拉东变换参考
参考:常用于 医学成像。原创 2024-11-04 16:35:40 · 11 阅读 · 0 评论 -
级联滤波器
级联滤波器(Cascade Filters)是通过串联多个滤波器来获得更复杂的频率响应。每个滤波器的输出作为下一个滤波器的输入,这种方法用于精确控制系统的频率响应,比如在特定频率段获得更陡峭的衰减或组合多种滤波效果(如低通、高通、带通等)。使用 scipy.signal.butter 设计滤波器,如低通、高通或带通滤波器。假设我们设计两个滤波器,一个是低通,一个是高通。级联多个传递函数,通过串联多个滤波器系统来实现更复杂的滤波效果。设计多个滤波器(低通、高通、带通等)并获得其滤波器系数。原创 2024-10-18 17:08:04 · 96 阅读 · 0 评论 -
傅里叶变换的直观解释
拉式变换很重要的原因是,很多系统,比如RLC电路,弹簧上的质量 以及普遍的控制系统,会产生正弦和指数输出,需要拉式变换去分析他们。积分无穷大,说明原始函数里的参数是 w=3 alpha=-0.5,当 w= pi 时,积分为无穷大,否则为0。当w=0时,cos(wt)=1 ,F(0)=左图中f(t) 图形下的面积。如果W 不是4个频率中的一个,则只能得到0,正区域和负区域会相互抵消。傅里叶变换的强大之处,能从原本的函数中扫描出正弦(余弦?F(w)是个复数有实部和虚部两部分,由实部和虚部两部分。原创 2024-07-16 18:34:33 · 161 阅读 · 0 评论 -
桥梁模态识别
在信号处理、电子工程和声学中,FRF代表“频率响应函数”。这是描述系统或设备如何响应不同频率输入的数学表示。FRF(频率响应函数)是系统输入频率(通常以赫兹为单位)与输出响应幅度(通常以分贝或线性单位为单位)之间的关系。它提供了一种理解系统行为的方式,因为它揭示了系统如何放大或衰减不同频率的信号以及引入相位移。FRF通常以图表形式表示,称为“频响曲线”或“幅度响应图”。横轴表示频率,纵轴表示幅度。该图表显示系统响应随频率变化的方式。FRF的一些关键方面包括:增益:FRF描述系统的增益或放大。原创 2024-06-05 16:37:17 · 366 阅读 · 0 评论 -
提取时频脊线
同步压缩是一种在数字信号处理中常用的技术,它的目的是对信号进行压缩,同时保留信号中的时间结构信息。这种压缩方式非常适用于需要实时传输、存储和处理的信号,如音频、视频、传感器数据等。常用方法:小波变换(Wavelet Transform):小波变换在信号处理中被广泛应用,它能够将信号分解成不同尺度和频率的成分,从而允许对信号进行时频分析。通过选择适当的小波基函数和压缩算法,可以实现同步压缩。原创 2024-05-31 17:21:19 · 642 阅读 · 0 评论 -
关于窗函数以及汉宁窗的设计
窗函数(英语:window function)在信号处理中是指一种除在给定区间之外取值均为0的实函数。譬如:在给定区间内为常数而在区间外为0的窗函数被形象地称为矩形窗。任何函数与窗函数之积仍为窗函数,所以相乘的结果就像透过窗口“看”其他函数一样。窗函数在频谱分析、滤波器设计、波束形成、以及音频数据压缩(如在Ogg Vorbis音频格式中)等方面有广泛的应用。原创 2024-05-13 13:30:37 · 53 阅读 · 0 评论 -
同步压缩-提取时频背脊线
同步压缩是一种在数字信号处理中常用的技术,它的目的是对信号进行压缩,同时保留信号中的时间结构信息。这种压缩方式非常适用于需要实时传输、存储和处理的信号,如音频、视频、传感器数据等。常用方法:小波变换(Wavelet Transform):小波变换在信号处理中被广泛应用,它能够将信号分解成不同尺度和频率的成分,从而允许对信号进行时频分析。通过选择适当的小波基函数和压缩算法,可以实现同步压缩。原创 2024-05-08 17:43:38 · 286 阅读 · 0 评论 -
mset-非线性状态评估算法
计算正常状态与观测状态的残差,设定一个阈值,通过比较残差与阈值的大小,估计是正常/异常。其中,用欧式距离代替 向量点乘。具体公式及推理过程见参考文献。原创 2024-05-08 09:31:54 · 141 阅读 · 0 评论 -
瞬态瑞丽波频散曲线提取
【代码】瞬态瑞丽波频散曲线提取。原创 2024-04-16 18:23:50 · 98 阅读 · 0 评论 -
同步压缩理论
在频率方向进行能量重新分配(分配到中心)原创 2024-04-10 18:40:01 · 67 阅读 · 0 评论 -
时频分析实战-时频脊线
此示例说明如何执行和解释基本的时频信号分析。在实际应用中,许多信号是非平稳信号。这意味着其频域表示(其频谱)随时间变化。该示例讨论使用时频方法相对于信号的频域或时域表示的优势。它回答了一些基本问题,例如:信号中何时会出现特定频率分量?如何提高时间或频率分辨率?如何锐化分量的频谱或提取特定模式?如何在时频表示中测量功率?如何可视化信号的时频信息?如何在感兴趣信号的频率成分里找到间歇性干扰?也可以使用连续小波变换来执行信号的时频分析。原创 2024-03-15 10:02:58 · 377 阅读 · 0 评论 -
生成二维码-读取二维码-动态二维码
【代码】生成二维码-读取二维码-动态二维码。原创 2024-03-12 11:02:14 · 75 阅读 · 0 评论 -
小波散射网络及其应用
小波变换的散射算子(Scattering operators)[41],能提取出原始信息在弹性形变、仿射变换中。年后,Mallat 又提出了基于小波变换的小波散射网络这一新型网络结构,该网络主要是基于。和低频特征信息,再将低频信息进行非线性平稳变换以保证其形变不变性[42],利用平均算子。小波变换和非线性变换的过程逐步得到原始信息的特征[43]。小波散射网络首先将原始信息通过预先设定好的小波滤波器,分层次提取高频。将高频信息转化为低频信息,期间丢失的高频信息通过散射算子恢复,通过不断地循环进行。原创 2024-03-11 18:29:15 · 756 阅读 · 0 评论 -
用自编码器检测小波散射异常 MATLAB
小波散射LSTM自编码器卷积自编码器卷积自编码器比LSTM自编码器快!原创 2024-03-07 16:43:49 · 151 阅读 · 0 评论 -
认识小波-DWT CWT Scattering
大家好。在本次介绍性课程中,我将介绍一些基本的小波概念。我将主要使用一维示例,但相同的概念也可以应用于图像。首先,我们回顾一下什么是小波。现实世界的数据或信号经常表现出缓慢变化的趋势或瞬态波动。另一方面,图像具有被边缘或对比度突然变化中断的平滑区域。**这些突然的变化通常是数据中最有趣的部分,无论是在感知上还是在它们提供的信息方面。傅里叶变换是数据分析的强大工具。然而,它并不能有效地表示突变。**其原因是傅立叶变换将数据表示为正弦波之和,这些正弦波在时间或空间上不局域化。这些正弦波永远振荡。原创 2024-03-06 14:22:18 · 160 阅读 · 0 评论 -
matlab处理时间序列
小波散射网络 , 包含小波变换层,非线性层、池化层。第一层平均,丢失高频率信息。原创 2024-03-06 10:45:39 · 61 阅读 · 0 评论 -
2.3 离散时间系统的差分方程
离散时间差分方程描述和求解原创 2024-02-27 14:19:44 · 79 阅读 · 0 评论 -
线性时不变系统-线性卷积
正弦序列。原创 2024-02-27 13:21:01 · 86 阅读 · 0 评论 -
数字信号处理教程学习笔记1-第2章时域中的离散信号和系统
模拟信号和数字信号分别是啥样的,有啥区别模拟信号: 连续变化的信号,其数值在一段时间内可以无限制地取任意值数字信号:离散的信号,它的数值在一段时间内只能取有限个特定值第一章习题1.1 设一组电压值为 x = [- 0.3,0.5,1,-2,3,-4],经过一个量化步长为 0.15 的量化装置,求量化后的整数和它们对应的量化电压,并求出其绝对误差和相对误差。原创 2024-01-12 18:37:11 · 214 阅读 · 0 评论 -
EMD+包络谱故障诊断
EMD是一种信号处理方法,用于将信号分解成多个本征模态函数(Intrinsic Mode Functions,IMF),每个IMF代表信号中的一个固有振动模式。它通过对信号包络谱的谱线斜率进行测量,反映了信号包络的变化程度。结合VMD和包络谱峭度,可以提取故障声音中的有用特征。计算包络谱: 对每个包络信号计算其频谱,并计算包络谱峭度。采集故障声音数据: 首先,收集包含故障声音的数据,例如机械设备的运行状态中产生的声音。特征组合: 将每个IMF的包络谱峭度作为特征,可以将这些特征组合成一个特征向量。原创 2024-01-08 16:59:45 · 609 阅读 · 0 评论 -
奇异值分解
这个例子中,我们选择了 ( k = 2 ),即保留两个最重要的奇异值,从而实现了对矩阵的降维。构建新矩阵: 用选定的特征构建一个新的矩阵,即 ( A_k = U_k \Sigma_k V_k^T ),其中 ( U_k, \Sigma_k, V_k^T ) 是相应的前 ( k ) 个列向量或对角元素。选择主要特征: 将奇异值按照大小排序,保留最大的 k 个奇异值对应的列向量,其中 ( k ) 是降维后的维度。计算SVD: 对给定的矩阵 ( A ) 进行奇异值分解,得到 ( U, \Sigma, V^T )。原创 2024-01-08 16:17:17 · 1155 阅读 · 0 评论 -
维纳滤波-python实现
然后,我们添加了高斯白噪声来模拟受噪声污染的信号。最后,我们使用wiener函数来对受噪声污染的信号进行维纳滤波,得到恢复的信号。维纳滤波器的设计需要估计信号和噪声的功率谱密度,以及信号和噪声的互相关函数。根据这些估计值,可以计算出维纳滤波器的频谱,并将其应用于受噪声污染的信号,从而恢复出原始信号。维纳滤波的基本原理是,根据信号和噪声的统计特性,通过频域上的滤波来最小化恢复信号与原始信号之间的均方误差。其中,H(f)是信号的频谱,N(f)是噪声的频谱,S(f)是原始信号的频谱,G(f)是恢复信号的频谱。原创 2023-12-13 17:22:53 · 854 阅读 · 0 评论 -
拉普拉斯变换
通过拉普拉斯变换,可以将微分方程转换为传递函数形式,便于系统的分析和设计。总的来说,拉普拉斯变换在工程和科学领域中是一种非常有用的工具,它可以简化复杂系统的分析和设计过程,使得工程师和科学家能够更好地理解和处理微分方程、信号和系统。通过拉普拉斯变换,可以将微分方程描述的电路转换为代数方程,方便进行电路分析和设计。拉普拉斯变换在信号处理和控制理论中有着重要的作用。解决边界值问题:拉普拉斯变换在解决边界值问题(如热传导、振动等)中也有着重要的作用,通过将微分方程转换为代数方程,可以更容易地求解这些问题。原创 2023-11-29 15:58:29 · 248 阅读 · 0 评论 -
geatpy-遗传算法
同样是求解案例1的问题,这里我们在定义目标函数时不加ea.Problem.single标记。这意味着evalVars()传入的是一个Numpy ndarray二维数组。原创 2023-10-30 15:36:10 · 164 阅读 · 0 评论 -
正则表达式以及 pattern 的撰写方式
在Python中,可以使用re模块来进行正则表达式的撰写和匹配。其中,r表示原始字符串,可以避免转义字符的问题。需要注意的是,在定义正则表达式模式时,可以使用一些特殊字符和语法规则,例如点号(.)表示任意字符,星号(另外,还可以使用re模块的一些特殊方法和标志来进一步定制正则表达式的匹配方式,例如忽略大小写、多行匹配等。以上是一个基本的正则表达式撰写方法示例,更复杂的正则表达式可以根据具体需求进行构建。在实际使用中,可以结合re模块的各种函数和方法,灵活地处理字符串匹配和替换的需求。原创 2023-10-30 11:09:51 · 424 阅读 · 0 评论 -
激活函数作用以及 sigmoid和softmax
激活函数在神经网络中起着非常重要的作用,它的主要功能是引入非线性性质,使得神经网络可以学习和表示更加复杂的模式和关系。控制神经元的激活程度:激活函数可以控制神经元在不同输入值下的激活程度。例如,ReLU(Rectified Linear Unit)函数在输入大于零时被激活,而在输入小于等于零时被抑制。需要注意的是,选择合适的激活函数对于神经网络的训练和性能非常重要。不同类型的激活函数适用于不同的问题,应根据具体情况进行选择。此外,还需要注意梯度消失和爆炸的问题,避免梯度无法传播或引起数值不稳定性。原创 2023-10-27 16:01:00 · 304 阅读 · 0 评论 -
knn相似性搜索
【代码】knn相似性搜索。原创 2023-10-26 14:55:45 · 75 阅读 · 0 评论 -
损失函数和评估函数
损失函数是用于衡量模型在训练过程中预测结果与实际结果之间的差异的函数。它通过计算模型的预测值与实际值之间的距离或差异来 quantitatively 表示模型的性能好坏。损失函数通常被用作优化算法(如梯度下降)的目标函数,通过最小化损失函数来调整模型参数,使得模型的预测结果更加接近实际结果。评估函数也是用于衡量模型性能的指标,但与损失函数不同,评估函数是在模型训练完成后对模型进行综合评价的指标。评估函数可以用于比较不同模型的性能,或者判断模型是否满足特定应用需求。原创 2023-10-25 14:07:05 · 949 阅读 · 0 评论 -
Fpass与Fstop
这些参数在滤波器设计中非常重要,可以用来控制滤波器的频率特性和性能。在MATLAB中,“Fpass”、“Fstop”、"Apass"和"Astop"是数字滤波器设计中常用的参数。"Fpass"表示通带频率,指的是滤波器允许通过的频率范围。在数字滤波器设计中,通常以归一化频率表示,取值范围为0到0.5,其中0.5对应采样频率的一半。"Apass"表示通带衰减,指的是滤波器在通带内的衰减量。"Astop"表示阻带衰减,指的是滤波器在阻带内的衰减量。"Fstop"表示阻带频率,指的是滤波器需要抑制的频率范围。原创 2023-08-23 14:13:16 · 2953 阅读 · 0 评论 -
希尔伯特-黄变换(Hilbert-Huang Transform,HHT)
EMD是一种信号分解方法,它将信号分解为一系列IMF,每个IMF都满足以下两个条件:1)在局部尺度上是单调的,即在极值点的数量与零交点的数量相等或差1;2)它的上下包络线的平均值为零。希尔伯特-黄变换(Hilbert-Huang Transform,HHT)是一种非线性信号分析方法,它将信号分解为一系列固有模态函数(Intrinsic Mode Functions,IMF),然后对每个IMF进行希尔伯特变换,得到每个IMF的解析信号,从而计算出每个IMF的瞬时频率和瞬时振幅。原创 2023-07-26 13:59:28 · 1933 阅读 · 0 评论 -
希尔伯特变换
并且这个复值信号具有一些有趣的性质,例如包络和瞬时频率。这些性质可以被用于分析信号的特征,例如,通过Hilbert变换可以分析信号的频率,比如主频,最大振幅处的频率等。希尔伯特变换在音频信号处理和调制信号分析等领域都有广泛的应用。希尔伯特变换的作用是将一个。原创 2023-07-26 11:27:52 · 1238 阅读 · 0 评论 -
滤波器的阶数、波纹、衰减
低阶滤波器的主要特点是处理信号时的频率选择性较弱,对信号的变化响应较为平滑。低阶滤波器通常具有较宽的频率响应曲线,可以允许较多的信号频率通过滤波器而不被衰减。高阶滤波器的主要特点是处理信号时的频率选择性较强,对信号的变化响应较为陡峭。对于低通滤波器而言,通带纹波指的是通带内频率响应的波动,而阻带纹波指的是阻带内频率响应的波动。而高阶滤波器对信号进行较为陡峭的处理,适用于需要较强频率选择性或频率变化较快的信号。较小的纹波和较大的衰减可以提供更好的滤波性能,但可能会导致滤波器的复杂性增加或成本增加。原创 2023-07-21 17:04:18 · 4584 阅读 · 1 评论 -
python实现小波降噪
信号经小波分解后,有这样的特点:对于每层的小波系数,噪声对应的数值较小,因而,选取合适的阈值,将绝对值小于阈值的小波系数置 0,绝对值较大的系数予以保留或收缩(阈值函数的作用),再利用小波逆变换进行重构,即得到去噪后的信号。小波阈值去噪方法认为,信号中的噪声存在于高频成分之中(即D1,D2,D3),因此,对于细节小波系数做阈值收缩处理(得到D3’,D2’,D1’),再将各小波系数(A3,D3’,D2’,D1’)进行组合重构就得到去噪后的信号。选择合适的小波基以及分解尺度,进行小波分解,得到一组小波系数。原创 2023-07-19 16:20:58 · 1065 阅读 · 0 评论 -
FIR滤波器与IIR滤波器
FIR滤波器(有限脉冲响应滤波器):FIR滤波器是一种线性时不变滤波器,它的输出只依赖于当前输入和过去的输入。FIR滤波器通过对输入信号的加权平均来实现滤波效果。常见的FIR滤波器设计方法包括窗函数法、频率采样法和最优化方法(如最小二乘法)。原创 2023-07-11 14:52:19 · 3864 阅读 · 0 评论 -
经验模态分解-用途
它可以将一个信号分解为一系列本征模态函数(Intrinsic Mode Functions,简称IMF),每个IMF都代表了信号中的一个特定频率和幅度调制的成分。经验模态分解,https://zh.wikipedia.org/wiki/%E7%B6%93%E9%A9%97%E6%A8%A1%E6%85%8B%E5%88%86%E8%A7%A3。信号分析:通过将信号分解为IMF,EMD可以提供对信号的时频特征进行分析的能力。通过保留重要的IMF成分,可以实现对信号的有效压缩,减少存储和传输的数据量。原创 2023-07-11 09:51:15 · 1233 阅读 · 0 评论 -
维纳滤波器
维纳滤波器是一种经典的信号处理滤波器,用于恢复受噪声污染或模糊的信号。它是根据统计信号处理理论中的最小均方误差准则设计的。维纳滤波器的主要思想是通过估计信号和噪声的功率谱密度来恢复原始信号。它假设信号和噪声是在频域上相互独立的,并且在时域上是线性平稳的。维纳滤波器的设计目标是最小化滤波后信号与原始信号之间的均方误差。维纳滤波器的设计过程可以分为以下几个步骤:估计信号和噪声的功率谱密度:通过对观测信号进行傅里叶变换,可以得到观测信号的频谱。通过对观测信号进行统计分析,可以估计信号和噪声的功率谱密度。原创 2023-07-10 15:21:16 · 994 阅读 · 0 评论 -
频谱分辨率、功率密度谱psd
DFT后频域相邻刻度之间的实际频率之差,还一般解释为能够分辨出的两个最小的频点间隔。在《Understanding Digital Signal Processing 》一书中作者提到频率分辨率为采样频率 - Fs采样点 - N采样时间 - t其中可知 N = Fst对于傅里叶变换来说,其频谱分辨率为 Fs/N = Fs/(Fst) = 1/t比如频率分辨率为8HZ,代表频域相邻两个刻度之间有8个点,相比3HZ较为稀疏。原创 2023-06-13 16:25:21 · 805 阅读 · 0 评论 -
fft 幅值归一化 求频率 小结
3. 删去重复值。原创 2023-06-06 16:39:26 · 1256 阅读 · 0 评论 -
怎样用通俗易懂的方式解释窗函数?
如下图所示,若周期截断,则FFT频谱为单一谱线。若为非周期截断,则频谱出现拖尾,如图中部所示,可以看出泄漏很严重。为了减少泄漏,给信号施加一个窗函数(如图中红色曲线所示),原始截断后的信号与这个窗函数相乘之后得到的信号为右侧上面的信号。可以看出,此时,信号的起始时刻和结束时刻幅值都为0,也就是说在这个时间长度内,信号为周期信号,但是只有一个周期。对这个信号做FFT分析,得到的频谱如右侧下边所示。相比较之前未加窗的频谱,可以看出,泄漏已明显改善,但并没有完全消除泄漏。因此,窗函数只能减少泄漏,不能消除泄漏。转载 2023-05-18 14:40:19 · 127 阅读 · 0 评论