k近邻算法_机器学习分类算法之k近邻算法

本编文章将介绍机器学习入门算法-k近邻算法,将会用demo演示机器学习分类算法。

在先介绍算法时,先回顾分类和回归的区别。像文章分类识别也是这样处理的,如1代表体育,2代表科技,3代表娱乐属于分类问题,需要运用分类算法。预测票房、股票等具体数值,这就是连续型,属于回归问题,需要运用回归算法。额外补充下转化器和估计器这两个在机器学习的重要概念。

转化器与估计器

转化器

ca452274599108da39758d0dd98b9ef0.png

转化器示意图

从代码层面来说就是继承了Transformer这个类就是转化器。

4212f5a442e6f513be997fdc25409b59.png

实例演示

api 介绍fit_transform():输入数据直接转换fit(): 输入数据,计算平均值,方差等等,但是对数据不做事transform(): 进行数据的转换

fit_transform()执行的是两个步骤,fit和transform,fit指定转化的标准,transform跟fit的制定的标准执行转化。如 out【3】和out【6】的执行结果是一致的,但是与out【8】是不一致的,因为它的fit的标准变了。

e7a44e206cfe2ec6b8e00d94d97e1616.png

类图关系

StandardScaler继承了TransformerMixin,被实例化出来的被称作转化器。


估计器

sklearn机器学习算法的实现-估计器

在sklearn中,估计器(estimator)是一个重要的角色,分类器和回归器都属于estimator,是一类实现了算法的API

1、用于分类的估计器:•sklearn.neighborsk-近邻算法•sklearn.naive_bayes      贝叶斯•sklearn.linear_model.LogisticRegression     逻辑回归2、用于回归的估计器:•sklearn.linear_model.LinearRegression     线性回归•sklearn.linear_model.Ridge      岭回归 
84abc6d059914e48cb6f138c8dd4708d.png

估计器的使用过程

分类算法-k近邻算法

概念

d957613b157fbceba054c9077da0f4d5.png

算法概念示例图

图中有一个人不知道自己所属于什么区,但是他知道其他人在什么位置以及距离。距离自己最近的人所在区来表示自己的所在的区。这就是k近邻算法的核心思想。

定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。来源:KNN算法最早是由Cover和Hart提出的一种分类算法。

f144fa1da5f9daafb60c93389bd0bcad.png

概念案例示意图

这里的特征是打斗镜头和接吻镜头,目标值是爱情片还是动作片。那么用k近邻算法就是求出它的”与未知电影的距离”。

两个样本的距离可以通过如下公式计算,又叫欧式距离。

c20c0df5acf41280f8d5ac3abb49e188.png

算法公式

但是它的特征如果很大,则会影响数据准确性。所以它需要标准化


k-近邻算法API

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')

n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数

algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:‘ball_tree’将会使用 BallTree,‘kd_tree’将使用 KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。 (不同实现方式影响效率)


实例

原题题目网址:https://www.kaggle.com/c/facebook-v-predicting-check-ins

根据提供信息预测用户入驻位置

d542e3fd334f2480b4a944f161eb84cc.png

问题描述

实例数据 https://pan.baidu.com/s/1BGKkCagNT8q81M-xgyW64w

密码 b2n4

2be1ab2eacfcd9dc55921a94fa4ad06b.png

数据描述

from sklearn.datasets import load_iris, fetch_20newsgroups, load_bostonfrom sklearn.model_selection import train_test_split, GridSearchCVfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.preprocessing import StandardScalerfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.metrics import classification_reportfrom sklearn.feature_extraction import DictVectorizerfrom sklearn.tree import DecisionTreeClassifier, export_graphvizfrom sklearn.ensemble import RandomForestClassifierimport pandas as pddef knncls():    """    K-近邻预测用户签到位置    :return:None    """    # 读取数据    data = pd.read_csv("./data/FBlocation/train.csv")    # print(data.head(10))    # 处理数据    # 1、缩小数据,查询数据晒讯    data = data.query ("x > 2.0 & x < 2.25 & y > 2.5 & y < 2.75")    # 处理时间的数据    time_value = pd.to_datetime(data['time'], unit='s')    print(time_value)    # 把日期格式转换成 字典格式    time_value = pd.DatetimeIndex(time_value)    # 构造一些特征    data['day'] = time_value.day    data['hour'] = time_value.hour    data['weekday'] = time_value.weekday    # 把时间戳特征删除    data = data.drop(['time'], axis=1)    # 把签到数量少于n个目标位置删除    place_count = data.groupby('place_id').count()    tf = place_count[place_count.row_id > 3].reset_index()    data = data[data['place_id'].isin(tf.place_id)]    # 取出数据当中的特征值和目标值    y = data['place_id']    x = data.drop(['place_id'], axis=1)    # 进行数据的分割训练集合测试集    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)    # 特征工程(标准化)    std = StandardScaler()    # 对测试集和训练集的特征值进行标准化    x_train = std.fit_transform(x_train)    x_test = std.transform(x_test)    # 进行算法流程 # 超参数    knn = KNeighborsClassifier(n_neighbors=5)    # fit, predict,score    knn.fit(x_train, y_train)    # 得出预测结果    y_predict = knn.predict(x_test)    print("预测的目标签到位置为:", y_predict)    # 得出准确率    print("预测的准确率:", knn.score(x_test, y_test))

提高准确率

没有变标准化 准确率为0.02

标准化之后 准确率为0.32

去除无用的rowid 准确率为0.40

调整n_neighbors=6 准确率为0.39

实例流程:

1、数据集的处理

2、分割数据集

3、对数据集进行标准化

4、estimator流程进行分类预测


注意点

1.k值取多大?有什么影响?

k值取很小:容易受异常点影响;k值取很大:容易受最近数据太多导致比例变化。

2.性能问题

每个样本进行预测都要与所有样本计算欧式距离,导致它的性能非常低下。在我们选择算法的时候,通常要考虑准确率高和不影响机器性能的算法。所以这个算法在实际较少用到。

3.优点

简单,易于理解,易于实现,无需估计参数,无需训练。估计参数不是KNeighborsClassifier(n_neighbors=5) 里的n_neighbors的参数,这种的参数叫做超参数,而估计参数是算法里面的参数。无需训练,因为与每个样本的距离的都是固定的,所以无需训练。

4.缺点

懒惰算法,对测试样本分类时的计算量大,内存开销大;必须指定K值,K值选择不当则分类精度不能保证。

后续会持续更新由浅入深机器学习的技术文章,有兴趣的朋友可看我之前的文章,关注我随时了解人工智能

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值