光滑曲线_对第一/二型曲线/曲面积分的小总结

公式

第一型曲线积分(Line Integrals):

第二型曲线积分(Line Integrals of Vector Fields):

第一型曲面积分(Surface Integrals):

第二型曲面积分(Surface Integrals of Vector Fields):

简单解释

曲线积分是在分段光滑的曲线(有限个光滑曲线的并集)上积分。
与第一型相比,第二型曲线积分的曲线有方向,要按着

(曲线方向的单位向量)的方向来积分(见第二型曲线积分公式的后者形式)。

第二型曲线积分,可以理解为将
分解投影到曲线前进方向的积分。

同样的,
曲面积分是在分段光滑的曲面(有限个光滑曲面的并集)上积分。
与第一型相比,第二型曲面积分的曲面有方向,要按着

(曲面方向的单位向量,也是曲面上某点对于曲面的法向量,与曲面保持垂直)的方向来积分(见第二型曲面积分公式的后者形式)。

第二型曲面积分,可以理解为将
分解投影到曲面方向的积分。

第一型与第二型的关系

从上一段的解释与公式可以看出:
在曲线积分中,如果第二型中的

的方向一直与
的方向平行,
的结果为

,同向取正,反向取负,则形式
与第一型相似。

同样的,
在曲面积分中,如果第二型中的

的方向一直与
的方向平行,则形式

第一型相似。

与一重定积分,二重积分的关系

一般来说,
求曲线积分,可以转化为一重定积分求解。(曲线积分中所有量至少可以用一个变量来表示)
求曲面积分,可以转化为二重积分求解。(曲面积分中所有量至少可以用两个变量来表示)

基本思想是直接转化或分解投影。

对于第一型曲线积分,一般是直接转化。
方法一是直接用题目给的曲线方程,把其他变量都用现成的一个变量表示,然后代入求解。
方法二是自己找个参数把曲线方程表示了,再代入求解。

第一型曲面积分也基本上是直接转化。方法跟第一型曲线积分相似,只是找的是两个变量。

对于第二型曲线积分,我们一般选择分解投影。
我们以二维平面上曲线举个栗子。
若曲线可以表示为:

,

并且
可以表示为:

( P, Q为F在x轴、y轴上的分量,可以看作是F分解投影到x轴与y轴了)
则可以得到:


到这一步就可以计算出来了。

投影怎么理解呢?我们可以继续推导一下:


会发现第二型曲线积分,实际上可以分为两部分。
一部分是F的x轴分量在x轴的积分,另一部分是F的y轴分量在y轴的积分。
也就是说,我们可以把第二型曲线积分中的F分解投影到坐标轴(一根直线)上,分量分别与坐标轴的单位向量平行。由于第二型曲线积分中,我们会把变量(如上面的参数t)按照曲线前进方向来积分,那么曲线路线的表示
就可以也分解到坐标轴上,其(x(t))变化会按照曲线前进方向进行正负改变。

在三维等多维空间的曲线积分也是相似的。
如三维:

对于第二型曲面积分,最常用的应该是直接转化。
也就是用

,这个式子。

先求出n(注意方向),然后dS按照第一型曲面积分的dS展开就好了。用的两个变量,可以是x, y, z三个中的两个,不好表示的话就自己找两个参数当变量。

有些时候,用分解投影会简化计算。
对三维空间的曲面进行积分,

可以表示为:

第二型曲面积分可以写成这种形式:

(推导过程这里就不写啦)

可以理解为,将F按照x, y, z轴的正方向分解,分成了三个部分。F在x轴方向上的分量P,与x轴单位向量平行,于是我们将曲面投影到yOz平面,可以看到该平面的方向单位向量正是x轴正/负方向的单位向量(上面的表达式中,方向向量的方向隐含在式子里,具体使用的时候才进行表示,方法为“一投二代三定号”,定号即为确定方向向量的方向)。所以,只需要把投影到yOz平面的面,像在曲面一样,把它们积分起来,就可以得到第一个部分:


剩下两个部分也是相似的。

曲线积分与曲面积分的转换

这里就只是简单讲一下个人的理解。

定理推导过程:

微积分基本定理(牛顿-莱布尼兹公式) —> 格林 —> 斯托克斯 与 高斯

Fundamental Theorem of Calculus —> Green's Theorem —> Stokes' Theorem and the Divergence Theorem

牛顿-莱布尼兹公式确立了一重定积分转化为被积函数的反导函数的计算。

格林公式:

左边是二重积分,右边是第二型曲线积分。
与牛顿-莱布尼兹公式形式相似。可以粗略理解为左边积分了一次,于是到了右边,被积函数少了偏微分的形式,少了一个积分符号。

实际上,如果F是在三维空间中,左边的形式可以转化一下:


这就类似于第二型曲面积分第三部分的形式了。

因为格林公式讲的是二维空间中的闭合曲线,那放到三维空间,就是在xOy上的闭合曲线。闭合曲线可以围成一个曲面,曲面投影到xOz平面与yOz平面都是一条线,面积为0,所以积分为0,那么真正有效的部分就只有在xOy平面上的面的积分。从这个角度看,就可以知道格林公式是斯托克斯公式的一个雏形。

斯托克斯公式:


左边是第二型曲面积分,右边是第二型曲线积分。

高斯公式:


左边是第二型曲面积分(符号上应有闭环,在LaTex上暂没找到对应符号,故此处没显示闭环),右边是三重积分。

在二维平面上,有这样的形式:


注意,它的左边不是第二型曲线积分,n的方向与曲线前进的方向保持垂直。
右边是一个二重积分。

最近刚学完一/二型的曲线/面积分,就来写写这个小总结(*/ω\*)

其实还有挺多细节都被我省略掉了,所以它只能算个粗略的总结(。﹏。)

需转载请标明来源~

文中若有任何的错误,欢迎各位帮忙指正~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值