python画多层网络_多层神经网络python实现

引言:神经网络在线教程有很多,如Andrew NG的deep leaning课程或者Michael Nielsen的在线教程《neural networks and deep learning》都讲述的很详细,只要认真听课,很好上手的。

循序渐进构建L层神经网络:

1.初始化参数

1)初始化两层神经网络参数,模型结构LINEAR -> RELU ——> LINEAR -> SIGMOID

def initialize_parameters(n_x, n_h, n_y):"""Argument:

n_x -- size of the input layer

n_h -- size of the hidden layer

n_y -- size of the output layer

Returns:

parameters -- python dictionary containing your parameters:

W1 -- weight matrix of shape (n_h, n_x)

b1 -- bias vector of shape (n_h, 1)

W2 -- weight matrix of shape (n_y, n_h)

b2 -- bias vector of shape (n_y, 1)"""np.random.seed(1)

W1= np.random.randn(n_h, n_x) * 0.01b1= np.zeros(shape=(n_h, 1))

W2= np.random.randn(n_y, n_h) * 0.01b2= np.zeros(shape=(n_y, 1))assert(W1.shape ==(n_h, n_x))assert(b1.shape == (n_h, 1))assert(W2.shape ==(n_y, n_h))assert(b2.shape == (n_y, 1))

parameters= {"W1": W1,"b1": b1,"W2": W2,"b2": b2}return parameters

2)递归初始化L层神经网络参数,模型结构[LINEAR -> RELU] *(L-1) -——> LINEAR -> SIGMOID

definitialize_parameters_deep(layer_dims):"""Arguments:

layer_dims -- python array (list) containing the dimensions of each layer in our network

Returns:

parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":

Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])

bl -- bias vector of shape (layer_dims[l], 1)"""np.random.seed(3)

parameters={}

L= len(layer_dims) #number of layers in the network

for l in range(1, L):

parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l - 1]))assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))return parameters

2.L层模型前向传播

1)线性前向传播公式:

deflinear_forward(A, W, b):"""Implement the linear part of a layer's forward propagation.

Arguments:

A -- activations from previous layer (or input data): (size of previous layer, number of examples)

W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)

b -- bias vector, numpy array of shape (size of the current layer, 1)

Returns:

Z -- the input of the activation function, also called pre-activation parameter

cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently"""Z= np.dot(W, A) +bassert(Z.shape == (W.shape[0], A.shape[1]))

cache=(A, W, b)return Z, cache

2)激活函数前向传播

deflinear_activation_forward(A_prev, W, b, activation):"""Implement the forward propagation for the LINEAR->ACTIVATION layer

Arguments:

A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)

W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)

b -- bias vector, numpy array of shape (size of the current layer, 1)

activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"

Returns:

A -- the output of the activation function, also called the post-activation value

cache -- a python dictionary containing "linear_cache" and "activation_cache";

stored for computing the backward pass efficiently"""

if activation == "sigmoid":#Inputs: "A_prev, W, b". Outputs: "A, activation_cache".

Z, linear_cache =linear_forward(A_prev, W, b)

A, activation_cache=sigmoid(Z)elif activation == "relu":#Inputs: "A_prev, W, b". Outputs: "A, activation_cache".

Z, linear_cache =linear_forward(A_prev, W, b)

A, activation_cache=relu(Z)assert (A.shape == (W.shape[0], A_prev.shape[1]))

cache=(linear_cache, activation_cache)return A, cache

3)L层模型前向传播:

其中,

,实现过程:

defL_model_forward(X, parameters):"""Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation

Arguments:

X -- data, numpy array of shape (input size, number of examples)

parameters -- output of initialize_parameters_deep()

Returns:

AL -- last post-activation value

caches -- list of caches containing:

every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)

the cache of linear_sigmoid_forward() (there is one, indexed L-1)"""caches=[]

A=X

L= len(parameters) // 2 #number of layers in the neural network

#Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.

for l in range(1, L):

A_prev=A

A, cache=linear_activation_forward(A_prev,

parameters['W' +str(l)],

parameters['b' +str(l)],

activation='relu')

caches.append(cache)#Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.

AL, cache =linear_activation_forward(A,

parameters['W' +str(L)],

parameters['b' +str(L)],

activation='sigmoid')

caches.append(cache)assert(AL.shape == (1, X.shape[1]))return AL, caches

3.交叉熵损失函数

defcompute_cost(AL, Y):"""Implement the cost function defined by equation (7).

Arguments:

AL -- probability vector corresponding to your label predictions, shape (1, number of examples)

Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)

Returns:

cost -- cross-entropy cost"""m= Y.shape[1]#Compute loss from aL and y.

cost = (-1 / m) * np.sum(np.multiply(Y, np.log(AL)) + np.multiply(1 - Y, np.log(1 -AL)))

cost= np.squeeze(cost) #To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).

assert(cost.shape ==())return cost

4.L-层反向传导实现

中,

 ; 

1)线性反向传播:

deflinear_backward(dZ, cache):"""Implement the linear portion of backward propagation for a single layer (layer l)

Arguments:

dZ -- Gradient of the cost with respect to the linear output (of current layer l)

cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer

Returns:

dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev

dW -- Gradient of the cost with respect to W (current layer l), same shape as W

db -- Gradient of the cost with respect to b (current layer l), same shape as b"""A_prev, W, b=cache

m= A_prev.shape[1]

dW= np.dot(dZ, cache[0].T) /m

db= np.squeeze(np.sum(dZ, axis=1, keepdims=True)) /m

dA_prev= np.dot(cache[1].T, dZ)assert (dA_prev.shape ==A_prev.shape)assert (dW.shape ==W.shape)assert(isinstance(db, float))return dA_prev, dW, db

2)激活函数反向传导:

deflinear_activation_backward(dA, cache, activation):"""Implement the backward propagation for the LINEAR->ACTIVATION layer.

Arguments:

dA -- post-activation gradient for current layer l

cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently

activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"

Returns:

dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev

dW -- Gradient of the cost with respect to W (current layer l), same shape as W

db -- Gradient of the cost with respect to b (current layer l), same shape as b"""linear_cache, activation_cache=cacheif activation == "relu":

dZ=relu_backward(dA, activation_cache)elif activation == "sigmoid":

dZ=sigmoid_backward(dA, activation_cache)#Shorten the code

dA_prev, dW, db =linear_backward(dZ, linear_cache)return dA_prev, dW, db

3)L层模型反向传播:

defL_model_backward(AL, Y, caches):"""Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group

Arguments:

AL -- probability vector, output of the forward propagation (L_model_forward())

Y -- true "label" vector (containing 0 if non-cat, 1 if cat)

caches -- list of caches containing:

every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)

the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])

Returns:

grads -- A dictionary with the gradients

grads["dA" + str(l)] = ...

grads["dW" + str(l)] = ...

grads["db" + str(l)] = ..."""grads={}

L= len(caches) #the number of layers

m = AL.shape[1]

Y= Y.reshape(AL.shape) #after this line, Y is the same shape as AL

#Initializing the backpropagation

dAL = dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 -AL))#Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]current_cache= caches[-1]

grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] =linear_backward(sigmoid_backward(dAL,current_cache[1]), current_cache[0])for l in reversed(range(L-1)):#lth layer: (RELU -> LINEAR) gradients.

#Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)]

current_cache =caches[l]

dA_prev_temp, dW_temp, db_temp= linear_backward(sigmoid_backward(dAL, caches[1]), caches[0])

grads["dA" + str(l + 1)] =dA_prev_temp

grads["dW" + str(l + 1)] =dW_temp

grads["db" + str(l + 1)] =db_tempreturn grads

5.更新参数

defupdate_parameters(parameters, grads, learning_rate):"""Update parameters using gradient descent

Arguments:

parameters -- python dictionary containing your parameters

grads -- python dictionary containing your gradients, output of L_model_backward

Returns:

parameters -- python dictionary containing your updated parameters

parameters["W" + str(l)] = ...

parameters["b" + str(l)] = ..."""L= len(parameters) // 2 #number of layers in the neural network

#Update rule for each parameter. Use a for loop.

for l inrange(L):

parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]

parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]return parameters

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值