浅谈VMD(变分模态分解)
统一解释一下,我也是才学习这个,很多地方不懂。至于译文,也是自己根据原论文进行的一些翻译,很多地方不是很准确,研一的可以自己试着去读英文原文,而且大家学校应该都能下载这篇论文。研二的如果急着要用可以参考借鉴一下。
新的自适应信号处理方法,对非平稳、非线性信号具有良好处理效果。
文章说明
因为最近论文需要用到VMD,所以看了几篇关于VMD的论文,VMD在2014年提出,所以其论文比较新,而且知网上的论文都是基于VMD的应用,里面的原理都是从VMD原文摘抄,不太好理解,我也看了VMD这篇论文,我也进行了一定的翻译,译文在后面,但翻译总有差距,希望英语好的专业好的能提出建议,谢谢。
阅读说明
我知道好多人看着VMD看博客最想知道的就是这东西的应用和大概步骤原理,而具体原理算法不太感兴趣,而且也不太容易看懂。本文既然是浅谈,就从VMD的步骤和应用。
VMD工作原理步骤
步骤
VMD是通过迭代搜寻变分模型(具体怎么搜寻,请亲们自己看,我主要讲他的大概)最优解, 来确定我们所知的模态uk(t)及其对应的中心频率ωk和带宽。
每个模态都是具有中心频率的有限带宽(就是在频域中有在一定的宽度)。所有模态之和为源信号。
而对求最优解采用二次惩罚和拉格朗日乘数将上诉约束问题转换为非约束问题,并用交替方向乘子法求解这个非约束问题, 通过迭代更新最终得到信号分解的所有模态。分解的所有模态中有包含主要信号的模态和包含噪声的模态。将包含主要信号的模态进行重构,从而达到去噪的效果。
代码步骤思路(uk和ω