摘要:本文聚焦人工智能与深度学习在地质灾害状况综合分析中的应用。它们可高效利用传感器的地表位移数据和无人机图像数据,前者经数据预处理、特征提取等,用机器学习算法建模预警;后者基于 CNN 等提取特征、分类识别。两者数据融合有特征级、决策级、模型级等方式。文中给出 LSTM、CNN 及数据融合的代码示例,还阐述实操案例流程。尽管面临数据质量等挑战,但随着技术发展,其与多技术融合,将为地质灾害防治提供更有力支持,前景广阔。
必看!人工智能与深度学习如何助力地质灾害精准分析与防治
一、引言
地质灾害,如滑坡、泥石流、地面塌陷等,一直以来都是威胁人类生命财产安全和生态环境稳定的重要因素。随着全球气候变化和人类活动的加剧,地质灾害的发生频率和危害程度呈现出上升的趋势。因此,准确、及时地监测和评估地质灾害状况,对于采取有效的预防、监测和应急响应措施至关重要。
人工智能(Artificial Intelligence, AI)和深度学习(Deep Learning, DL)技术作为当今科技领域的前沿技术,具有强大的数据处理、分析和模式识别能力。在地质灾害状况综合分析中,这些技术能够高效地利用传感器