奥维地图怎么查看历史地图_奥维互动地图使用小技巧

前言:测绘地信行业涉及大量的野外工作,将AutoCAD或ArcGIS矢量数据中具有位置信息的踏勘路径、项目区范围等图形文件按照实际比例导入到奥维地图中,结合手机等便携式电子设备中的GPS定位功能;可大大方便现场踏勘工作,提高定位准确度及效率、实现踏勘者位置与踏勘路线、项目区范围实时对应等效果。

  这里小编为大家介绍两个常用的方法,大家相互交流学习;第一种是AutoCAD导入奥维的方法。

1、首先将AutoCAD转换成DXF的格式;

5f565bd7-a815-eb11-8da9-e4434bdf6706.png 

2、打开奥维互动地图,系统➜导入对象,选择已保存的DXF格式的文件;

61565bd7-a815-eb11-8da9-e4434bdf6706.png 

64565bd7-a815-eb11-8da9-e4434bdf6706.png

3、将CAD坐标设置选择为横轴墨卡托投影坐标,点击下方设置,选择坐标类型和填写中央经线;(这里小编的的矢量为2000国家大地坐标系、3度带35度带)

66565bd7-a815-eb11-8da9-e4434bdf6706.png

6b565bd7-a815-eb11-8da9-e4434bdf6706.png

4、点击导入,AutoCAD的矢量数据就成功导入到奥维地图里了。

6e565bd7-a815-eb11-8da9-e4434bdf6706.png

70565bd7-a815-eb11-8da9-e4434bdf6706.png

第二种方法为将ArcGIS中的SHP数据导入到奥维地图的方法。

1、首先将SHP数据定义坐标系。(这里小编的的矢量为2000国家大地坐标系、3度35度带)

72565bd7-a815-eb11-8da9-e4434bdf6706.png

74565bd7-a815-eb11-8da9-e4434bdf6706.png

2、然后,将定义完坐标系的矢量数据图层转为kml格式,数据填写如右下。

78565bd7-a815-eb11-8da9-e4434bdf6706.png

7b565bd7-a815-eb11-8da9-e4434bdf6706.png

3、打开奥维互动地图,系统➜导入对象,选择已保存的kml格式的文件,点击导入就可以了。

7f565bd7-a815-eb11-8da9-e4434bdf6706.png

85565bd7-a815-eb11-8da9-e4434bdf6706.png

87565bd7-a815-eb11-8da9-e4434bdf6706.png

小编就分享到这了,感谢大家的阅读,如果大家有更方便的方法记得告诉小编哈。

<think>嗯,用户之前问过是否可以用天地图奥维互动地图实现海岸线自动识别,现在他直接问如何用天地图做一个自动描绘海岸线的代码。我需要回顾之前的回答,确保这次提供具体的代码步骤。 首先,用户可能需要一个实际的代码示例,而不仅仅是理论上的步骤。之前我提到了使用Python和GDAL库,但可能需要更详细的代码框架。同时,用户可能对数据获取和处理的具体步骤不太清楚,需要详细说明。 天地图API的使用需要申请密钥,这点必须强调。另外,预处理中的NDWI计算是关键步骤,需要给出具体的公式和实现方法。用户可能对波段的选择有疑问,比如如何确定绿光和近红外波段的位置,需要说明假设的情况,或者建议查看地图的波段信息。 后处理部分,形态学滤波和矢量化也是重点,需要推荐具体的库,比如skimage和geopandas。同时,用户可能遇到分辨率不足的问题,可能需要补充注意事项,比如如何提升精度或者处理不同区域的数据差异。 还要考虑代码的可运行性,比如依赖库的安装,可能需要在回答中提到需要安装rasterio、numpy、skimage、geopandas等。此外,示例代码可能需要伪代码或注释,因为实际调用天地图API下载影像的部分可能比较复杂,用户可能需要根据文档进行调整。 另外,用户可能对法律合规性有疑问,需要再次提醒申请密钥和遵守使用条款。可能还需要比较其他数据源,比如Sentinel-2,如果天地图的数据不足时,可以建议结合其他数据源。 最后,确保回答结构清晰,分步骤说明,并提供完整的代码框架,方便用户理解和修改。可能还需要测试代码是否存在语法错误,确保示例正确。同时,用户可能需要知道如何处理结果,比如保存为shapefile或其他格式,需要给出相应的代码示例。</think>以下是基于天地图API实现海岸线自动识别的完整代码方案,采用Python语言并结合遥感图像处理技术: --- ### **一、环境准备** ```python # 安装必要库 pip install rasterio numpy scikit-image geopandas owslib matplotlib ``` --- ### **二、完整代码实现** ```python import numpy as np import rasterio from rasterio.transform import from_origin from skimage import morphology, filters import geopandas as gpd from owslib.wmts import WebMapTileService # 1. 获取天地图影像 def download_tianditu(west, south, east, north, zoom=10, layer='img'): """ 参数说明: west/south/east/north: 经纬度范围(WGS84) zoom: 缩放级别(1-18) layer: 图层类型(img=影像, cia=标注) """ TIANDITU_URL = "https://t0.tianditu.gov.cn/{}/wmts?tk=YOUR_KEY" # 需替换实际key wmts = WebMapTileService(TIANDITU_URL.format(layer)) # 计算瓦片坐标 matrix_id = wmts.tilematrixsets[0].identifier tile = wmts.gettile( layer=layer, tilematrix=matrix_id, row=..., # 需根据坐标计算 column=..., zoom=zoom ) return np.array(tile.convert('RGB')) # 2. NDWI计算与预处理 def calculate_coastline(image): """ 假设影像波段顺序为 [R, G, B, NIR] 实际需根据天地图具体波段调整 """ green = image[:, :, 1].astype(float) nir = image[:, :, 3].astype(float) # 计算NDWI ndwi = (green - nir) / (green + nir + 1e-9) # 自适应阈值分割 thresh = filters.threshold_otsu(ndwi) binary = ndwi > thresh # 形态学优化 cleaned = morphology.remove_small_objects(binary, min_size=100) cleaned = morphology.binary_closing(cleaned, morphology.disk(3)) return cleaned # 3. 矢量化输出 def vectorize_mask(mask, transform, crs='EPSG:4326'): shapes = rasterio.features.shapes(mask.astype(np.uint8), transform=transform) gdf = gpd.GeoDataFrame.from_features( [{'geometry': geom, 'properties': {'class': val}} for geom, val in shapes if val == 1], crs=crs ) return gdf # 主流程 if __name__ == "__main__": # 示例区域:厦门沿海 bbox = (118.04, 24.43, 118.16, 24.52) # 西,南,东,北 # Step 1: 下载影像 img = download_tianditu(*bbox, zoom=14) # Step 2: 计算海岸线掩膜 coastline_mask = calculate_coastline(img) # Step 3: 生成地理坐标系 transform = from_origin(bbox[0], bbox[3], (bbox[2]-bbox[0])/img.shape[1], (bbox[3]-bbox[1])/img.shape[0]) # Step 4: 矢量化 coastline_gdf = vectorize_mask(coastline_mask, transform) coastline_gdf.to_file("coastline.shp") # 可视化 coastline_gdf.plot() ``` --- ### **三、关键参数说明** | 参数 | 建议值 | 作用说明 | |-------------------|------------------|--------------------------| | `zoom` | 12-16 | 影像分辨率级别(16级≈2米)| | `min_size` | 50-200 | 最小有效区域像素数 | | 形态学操作尺寸 | disk(3)-disk(5) | 噪声消除效果 | --- ### **四、效果优化技巧** 1. **潮汐校正**: ```python # 可结合潮汐表API获取低潮时间 import pytide tide = pytide.Tide() tide_data = tide.get_astronomical_tide(lat, lon) ``` 2. **多时相融合**: ```python # 下载多期影像取水体频率 water_freq = np.mean([calculate_coastline(img) for img in imgs], axis=0) ``` 3. **亚像素边缘检测**: ```python from skimage.feature import canny edges = canny(ndwi, sigma=1) ``` --- ### **五、常见问题处理** 1. **波段不匹配**: - 通过天地图元数据查询实际波段顺序 - 使用调试模式查看波段直方图: ```python import matplotlib.pyplot as plt plt.hist(img[:, :, 1].flatten(), bins=256) ``` 2. **复杂地形处理**: ```python # 加入DEM高程辅助判断 dem = download_dem_data(bbox) water_mask = (ndwi > 0.2) & (dem < 5) # 假设海拔5米以下 ``` 3. **API限流**: - 添加请求间隔 ```python import time time.sleep(0.5) # 控制请求频率 ``` --- ### **六、成果展示** - 输出格式:Shapefile/GeoJSON - 可视化效果: ![海岸线提取结果示意图](https://via.placeholder.com/600x400?text=NDWI+Binary+→+Vector+Coastline) --- **注意事项**: 1. 需到[天地图开发者平台](https://console.tianditu.gov.cn/)申请API密钥 2. 高精度需求建议配合Landsat/Sentinel数据 3. 近岸养殖区可能产生干扰,需人工校验 如果需要针对特定区域调整参数或处理异常案例,可以提供具体坐标范围进一步分析! 🌊
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值