matlab 鞍点图,图解高等数学-下 14「极值和鞍点」

11.7 极值和鞍点

多元函数函数的最值需要通过函数的偏导数来求解, 也是多元微分学的一个重点. 工程应用中有很多地方都用得到: 例如一个平面热金属上最高温度是多少? 位置在那里? 一个给定的函数曲面最高点如何达到? 这些都需要考察函数的的偏导数来解答.

不过先来回顾下一元函数求极值的步骤, 可微函数(光滑曲线)是连续的. 所以极值可能会在 f'(c)=0 、区间的端点或一个或多个内点不可微的地方, 这些点都需要加入到考察的范围中.

125567010_1_20180226052926107

二元函数也类似这样的请看, 极值点可能出现在区域边界点或两个偏导为 0 的内点或一个或两个偏导数不存在的地方.

二元函数的局部极值

我们来分辨 二元函数中那些点是局部最大, 局部最小或是全局最大, 全局最小, 请看下面动画所示:

125567010_2_20180226052926294

局部最大值对应的函数曲面的山峰, 而局部最小值对应的谷底. 对于这样的点, 切平面存在时一定是水平的. 与一元函数一样, 可以用一阶导数判别法来判断局部极值.

125567010_3_20180226052926498

但请注意上面定理的局限性. 它不适用于定义域的边界点(边界点有可能有极值, 且有非零导数). 另外它也不能用于 fx 或 fy 不存在的地方.

125567010_4_20180226052926544

这样, 函数 f 仅有的极值的点是临界点或边界点. 与一元函数可能存在拐点一元, 二元可微函数可能存在鞍点.

125567010_5_20180226052926591

观察下面两条图形中鞍点:

125567010_6_20180226052926654

观察下面函数 x^2−y^2 的鞍点(红点), 此函数没有局部极值.

125567010_7_20180226052926857

125567010_8_2018022605292744

上面定理就是说如果 D(a,b) > 0, 则曲面在任何方向以同样的方式弯曲:如果 fxx < 0="" ,="" 则朝下,="" 产生局部极大;如果="" fxx=""> 0 , 则朝上, 产生局部极小;

如果 D(a,b) < 0,="" 则曲面某些方向向上,="" 某些方向向下,="">

海森矩阵(Hessian matrix)为下面矩阵形式, 其行列式即为上面判别式.

125567010_9_2018022605292791

125567010_10_20180226052927123

125567010_11_20180226052927154

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值