反向传播算法(过程及公式推导)_无公式理解反向传播算法之精髓

点击上方“机器学习算法与Python实战”,选择“置顶”公众号

重磅干货,第一时间送达f4c0cbcb25cf041009e1a2c4ca0fafbf.png

往期回顾

4a020cbca59057af0534014123ee8486.gif 100天搞定机器学习(Day1-34)

4a020cbca59057af0534014123ee8486.gif100天搞定机器学习|Day35 深度学习之神经网络的结构

4a020cbca59057af0534014123ee8486.gif100天搞定机器学习|Day36 深度学习之梯度下降算法

本篇为100天搞定机器学习之第37天,亦为3Blue1Brown《深度学习之反向传播算法》学习笔记。

c322e1b8c68da5325b0ab73ead137a25.png 上集提到我们要找到特定权重和偏置,从而使代价函数最小化,我们需要求得代价函数的负梯度,它告诉我们如何改变连线上的权重偏置,才能让代价下降的最快。 反向传播算法是用来求这个复杂到爆的梯度的。 9b67f687485816bee92fe11e7cd58798.png 上一集中提到一点,13000维的梯度向量是难以想象的。 换个思路,梯度向量每一项的大小,是在说代价函数对每个参数有多敏感。 如下图,我们可以这样里理解,第一个权重对代价函数的影响是是第二个的32倍。 ffd6994062e0d8c531c20b38c13ac518.png 我们先不要管反向传播算法这一堆公式,当我们真正理解了这算法,这里的每一步就会无比清晰了。 10cfb83e0d664fe7ca196320959e5e37.png 我们来考虑一个还没有被训练好的网络。 我们并不能直接改动这些激活值,只能改变权重和偏置值。 但记住,我们想要输出层出现怎样的变动,还是有用的。 我们希望图像的最后分类结果是2,我们期望第3个输出值变大,其余输出值变小,并且变动的大小应该与现在值和目标值之间的差成正比。 举个例子,增大数字2神经元的激活值,就应该比减少数字8神经元的激活值来得重要,因为后者已经很接近它的目标了。 eb120a7cd38a4002037906eb82825543.png 进一步,就来关注数字2这个神经元,想让它的激活值变大,而这个激活值是把前一层所有激活值的加权和加上偏置值。 要增加激活值,我们有3条路可以走,一增加偏置,二增加权重,或者三改变上一层的激活值。 先来看如何调整权重,各个权重它们的影响力各不相同,连接前一层最亮的神经元的权重,影响力也最大,因为这些权重与大的激活值相乘。 增大这几个权重,对最终代价函数造成的影响,就比增大连接黯淡神经元的权重所造成的影响,要大上好多倍。 66f67c6d219af46199825cca1878c65a.png 请记住,说到梯度下降的时候,我们并不只看每个参数是增大还是变小,我们还看改变哪个参数的性价比最大。 994a336c6b12af221a860bd80c9fc0fe.png 第三个可以增加神经元激活值的方法是改变前一层的激活值,如果所有正权重链接的神经元更亮,所有负权重链接的神经元更暗的话,那么数字2的神经元就会更强烈的激发。 我们也要依据对应权重的大小,对激活值做成比例的改变,我们并不能直接改变激活值,仅对最后一层来说,记住我们期待的变化也是有帮助的。 7b6a99f7415d202d3b8ba4f088591383.png 不过别忘了,从全局上看,只只不过是数字2的神经元所期待的变化,我们还需要最后一层其余的每个输出神经元,对于如何改变倒数第二层都有各自的想法。 c124cf5cd215671ecf3f205e7bab9184.png 我们会把数字2神经元的期待,和别的输出神经元的期待全部加起来,作为如何改变倒数第二层的指示。 这些期待变化不仅是对应的权重的倍数,也是每个神经元激活值改变量的倍数。 6a7925ce6f4e153fd92f9875470eb4d5.png 这其实就是在实现反向传播的理念了,我们把所有期待的改变加起来,得到一串对倒数第二层改动的变化量,然后重复这个过程,改变倒数第二层神经元激活值的相关参数,一直循环到第一层。 我们对其他的训练样本,同样的过一遍反向传播,记录下每个样本想怎样修改权重和偏置,最后再去一个平均值。 36a1d557b258021debd8aebc532ec556.png 这里一系列的权重偏置的平均微调大小,不严格地说,就是代价函数的负梯度,至少是其标量的倍数。 神奇吧? 6e71b6f4dd1388bc8b7ae210d2574bcf.png 如果梯度下降的每一步都用上每一个训练样本计算的话,那么花费的时间就太长了。 实际操作中,我们一般这样做: 首先把训练样本打乱,然后分成很多组minibatch,每个minibatch就当包含了100个训练样本好了。 然后你算出这个minibatch下降的一步,这不是代价函数真正的梯度,然而每个minibatch会给一个不错的近似,计算量会减轻不少。 036f431e90bcbd050cbd2473460e7dac.png 8c3f5a40f7fc60bd00e61ec724578bdd.png 可以这样比喻: 沿代价函数表面下山,minibatch方法就像醉汉漫无目的的溜下山,但是速度很快。 而之前的方法就像细致入微的人,事先准确的算好了下山的方向,然后谨小慎微的慢慢走。 33a8cfe87be9bda72b3b399f1f389652.png 这就是随机梯度下降 03fcc4d82ca358e228038e3ce82c0b45.png 总结一下: 反向传播算法算的是单个训练样本怎样改变权重和偏置,不仅说每个参数应该变大还是变小,还包括这些变化的比例是多大才能最快地降低cost。 真正的梯度下降,对好几万个训练范例都这样操作,然后对这些变化取平均值,这样计算太慢了,我们要把所有样本分到各个minibatch中,计算每个minibatch梯度,调整参数,不断循环,最终收敛到cost function的局部最小值上。 理解是一回事,如何表示出来又是另一回事,下一期,我们一起将反向传播算法用微积分的形式推导出来,敬请期待!

d9fc59ab9c7345b266d491538cb0a2ff.png

添加微信,我们在微信群接着聊

7bc5137022f8382c2c4dab890902c962.png

推荐阅读

收藏 | 数据分析师最常用的10个机器学习算法!

一张让你代码能力突飞猛进的速查表

信息熵、条件熵、联合熵、互信息、相对熵、交叉熵

【干货收藏】人工智能必看的45篇论文

ed01f5ef6f2b6bcf0901ca6dc8ed05d9.png

6b6c17d5e14854e0d4c3376b65741d80.png点赞,转发,支持作者 c0bc554baf28116e13e61e5d07decf7f.gif
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值