决策树算法_决策树算法总结

前言

决策树是机器学习模型较常用的一种方法,李航老师《统计学习方法》详细的描述了决策树的生成和剪枝,本文根据书中的内容,对决策树进行了总结。

目录


1.决策树不确定性的度量方法

2.决策树的特征筛选准则

3.决策函数的损失函数评估

4.决策树最优模型的构建步骤

5.决策树的优缺点分析

决策树不确定性的度量方法

1. 不确定性的理解

下图为事件A是否发生的概率分布,事件发生记为1,讨论事件A的不确定性。

172ecea03e96e2ef8de34de5f1fcff4f.png

(1) 我们考虑一种极端的情况,若 p=1或 p=0,表示为事件A必定发生或事件A不可能发生,即不确定性为0。

(2) 若 p>1/2,即事件A发生的概率大于事件A不发生的概率,我们倾向于预测事件A是发生的;若 p<1/2,即事件A不发生的概率小于事件A发生的概率,我们倾向于预测事件A是不发生的。若 p=1/2,即事件A发生的概率等于事件A不发生的概率,我们无法作出预测,即事件A的不确定性达到最大,以致于我们无从预测,或者可以理解成事件A太复杂了,复杂的我们只能靠运气去猜测事件A是否发生。

2. 决策树不确定性的度量方法

本文用熵和基尼指数去衡量数据集的不确定性,假设数据集包含了K类,每个类的大小和比例分别为 Di 和 pi,i = 1,2,...K。

(1)熵的不确定性度量方法

在信息论和概率论统计中,熵是表示随机变量不确定性的度量,令熵为H(p),则:

50cda87bfe15918c609fe1330cc4efbd.png

熵越大,数据集的不确定性就越大。

(2)基尼指数的不确定度量方法

数据集的基尼指数定义为:

e3698a147c9aa1feb170c7f054de5ce0.png

基尼指数越大,数据集的不确定性越大。

决策树的特征筛选准则

假设数据集A共有K个特征,记为xi,i=1,2,...K。数据集A的不确定性越大,则数据集A包含的信息也越多。假设数据集A的信息为H(A),经过特征xi筛选后的信息为H(A|xi),定义信息增益g(A,xi)为两者的差值,即:

g(A,xi) = H(A) - H(A|xi)

选择使数据集A信息增益最大的特征作为筛选特征,数学表示为:

x = max( g(A,xi) ) = max( H(A) - H(A|xi) )

决策树的损失函数评估

令决策树的叶节点数为T,损失函数为:

0f515dd256d0c3ee56370af00c0a97f6.png

其中C(T)为决策树的训练误差,决策树模型用不确定性表示,不确定性越大,则训练误差亦越大。T表示决策树的复杂度惩罚,α参数权衡训练数据的训练误差与模型复杂度的关系,意义相当于正则化参数。

考虑极端情况:当α趋于0的时候,最优决策树模型的训练误差接近 0,模型处于过拟合;当α趋于无穷大的时候,最优决策树模型是由根节点组成的单节点树。

决策树最优模型的构建步骤

将数据集A通过一定的比例划分为训练集和测试集。

决策树的损失函数:

0f515dd256d0c3ee56370af00c0a97f6.png

决策树最优模型的构建步骤包括训练阶段和测试阶段:

训练阶段:

(1)最小化决策树的不确定性值得到的生成模型,即决策树生成;

(2)通过决策树剪枝,得到不同的正则化参数α下的最优决策树模型,即决策树剪枝。

下面重点讨论训练阶段的决策树生成步骤和决策树剪枝步骤。

决策树生成步骤:

(1) 根据决策树的特征筛选准则,选择数据集信息增益最大的特征;

 (2) 重复第一个步骤,直到所有叶节点的不确定性为0 。

决策树剪枝步骤:

(1) 将正则化参数α从小到大分成不同的区间362f35b48d6e078ce553651c0b3b6604.png,对决策树的非叶节点进行剪枝,令该节点为T,以该节点为根节点的子树为Tt。

(2) 当α满足如下条件时:

e195c0626c3fc00da8a534e432518971.png

即节点为单节点树的损失函数与子树Tt的损失函数相等,而剪枝后的复杂度降低了,泛化性能较好,因此,对该节点进行剪枝。

(3)遍历所有非叶节点,得到每个剪枝后的最优子树与对应的α参数 。

备注:决策树生成和剪枝步骤只给出大致框架,具体请参考李航《统计学习方法》

测试阶段:

通过测试集评估不同α参数下的最优决策树模型,选择测试误差最小的最优决策树模型和相应的正则化参数α。

决策树的优缺点分析

优点:

算法简单,模型具有很强的解释性

可以用于分类和回归问题

缺点:

决策树模型很容易出现过拟合现象,即训练数据集的训练误差很小,测试数据集的测试误差很大,且不同的训练数据集构建的模型相差也很大。实际项目中,我们往往不是单独使用决策树模型,为了避免决策树的过拟合,需对决策树结合集成算法使用,如bagging算法和boosting算法。

参考:李航《统计学习方法》

62fdb6ca90f108d10f1a5d9a8cdeb58c.png

推荐阅读:

复合材料多尺度理论分析方法之直接等效法; 【行业全景图】半导体集成电路拐点将至,新一轮产业爆发只等5G; 有了人脸识别,还需要掏校园卡吗?深入剖析Mean Shift聚类算法原理 ;欧盟5G战略自主,会因中国参与而丧失吗?面向实战的装备精确保障技术研讨会征文通知 ; 博士论文工作的基本特征和创新能力评价存在的挑战; 一首可靠性工程哲理的古老诗歌—执事的杰作,神奇的“单马马车”;

d7467f5bca9c14192335193d974c1d92.gif

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于信息熵进行划分选择的决策树算法是一种用于分类和回归分析的机器学习算法。该算法通过计算样本集中各个属性的熵,选择熵最小的属性作为节点进行划分,进而构建决策树。 Python编程语言提供了丰富的库和工具,可以方便地实现基于信息熵的决策树算法。下面是一个示例代码: ```python import pandas as pd import numpy as np def calculate_entropy(labels): unique_labels = np.unique(labels) entropy = 0 total_samples = len(labels) for label in unique_labels: p_label = len(labels[labels == label]) / total_samples entropy += -p_label * np.log2(p_label) return entropy def calculate_information_gain(data, labels, attribute): unique_values = np.unique(data[attribute]) total_samples = len(labels) info_gain = calculate_entropy(labels) for value in unique_values: subset_labels = labels[data[attribute] == value] p_value = len(subset_labels) / total_samples info_gain -= p_value * calculate_entropy(subset_labels) return info_gain def choose_best_attribute(data, labels): attributes = data.columns best_attribute = '' max_info_gain = -np.inf for attribute in attributes: info_gain = calculate_information_gain(data, labels, attribute) if info_gain > max_info_gain: max_info_gain = info_gain best_attribute = attribute return best_attribute def create_decision_tree(data, labels): # 基准情况:如果所有实例都属于同一类别,则返回该类别 if len(np.unique(labels)) == 1: return labels[0] # 基准情况:如果没有属性可用于划分,则返回实例数量最多的类别 if len(data.columns) == 0: unique_labels, counts = np.unique(labels, return_counts=True) return unique_labels[np.argmax(counts)] best_attribute = choose_best_attribute(data, labels) tree = {best_attribute: {}} unique_values = np.unique(data[best_attribute]) for value in unique_values: subset_data = data[data[best_attribute] == value].drop(columns=best_attribute) subset_labels = labels[data[best_attribute] == value] if len(subset_labels) == 0: unique_labels, counts = np.unique(labels, return_counts=True) tree[best_attribute][value] = unique_labels[np.argmax(counts)] else: tree[best_attribute][value] = create_decision_tree(subset_data, subset_labels) return tree # 示例使用 data = pd.DataFrame({ 'Outlook': ['Sunny', 'Sunny', 'Overcast', 'Rain', 'Rain', 'Rain', 'Overcast', 'Sunny', 'Sunny', 'Rain', 'Sunny', 'Overcast', 'Overcast', 'Rain'], 'Temperature': ['Hot', 'Hot', 'Hot', 'Mild', 'Cool', 'Cool', 'Cool', 'Mild', 'Cool', 'Mild', 'Mild', 'Mild', 'Hot', 'Mild'], 'Humidity': ['High', 'High', 'High', 'High', 'Normal', 'Normal', 'Normal', 'High', 'Normal', 'Normal', 'Normal', 'High', 'Normal', 'High'], 'Wind': ['Weak', 'Strong', 'Weak', 'Weak', 'Weak', 'Strong', 'Strong', 'Weak', 'Weak', 'Weak', 'Strong', 'Strong', 'Weak', 'Strong'], 'Play': ['No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No'] }) labels = data['Play'] data = data.drop(columns='Play') decision_tree = create_decision_tree(data, labels) print(decision_tree) ``` 以上代码中,我们首先定义了几个辅助函数。`calculate_entropy`函数用于计算标签的熵,`calculate_information_gain`函数用于计算每个属性的信息增益,`choose_best_attribute`函数用于选择信息增益最高的属性作为划分节点。然后,我们定义了`create_decision_tree`函数来递归构建决策树。 在示例中,我们使用了一个天气预测的数据集来构建决策树。最终打印出的决策树是一个字典,其中键表示划分的属性,值表示该属性的不同取值所对应的子树。 总结来说,Python编程语言提供了丰富的库和工具,可以很方便地实现基于信息熵的决策树算法。通过计算属性的熵和信息增益,我们可以选择最优的属性进行划分,从而构建出一个高效且准确的决策树模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值