当做到计算密集型任务时,往往都会想到用多核cpu的优势,对数据进行并行处理。虽然能力和GPU没法比,但是在不重写实验程序的前提下,用python下的multiprocess模块可以很方便的实现多进程并行计算。
multiprocess有很多种实现方法,可以方便地控制进行的启停,同步等,具体不在这里赘述,很多书籍和技术贴都有,这里只贴出我的一个demo简单说明如何调用map函数对任务进行分解执行。
from multiprocessing import Pool
x = 1
y = 2
z = 0
k = 0
def add(a,b,c):
c = a+b
print(id(c))
k = [c]
print(k, id(k))
return c
if __name__ == '__main__':
tries = 3
p = Pool(tries)
result = p.starmap(add, zip([x+i for i in range(tries)],[y]*tries, [z]*tries))
print(result,id(k))
print('-----')
print(add(x,y,z))
执行结果:
4297546624
[3] 4324646088
4297546656
[4] 4326853704
4297546688
[5] 4326854216
[3, 4, 5] 4297546528
-----
4297546624
[3] 4326242824
3
可以看到的是:
- 用
starmap
函数和zip
来进行多参数的传递。 - 启用几个任务就需要设置几组参数,并且以列表形式传递。
- 可以看到定义的参数
c
和k
在计算过程中传入各自进程后都形成了新的对象,主程序中的对象不受影响。