alpha值计算 qcolor_浅入浅出 | 学生t检验 (附qPCR计算升级版)

本文介绍了假设检验的概念,以qPCR数据处理为例,讲解了Student T Test(T检验)的原理和应用。通过一个苹果树的例子,解释了T检验如何比较两组数据的均值差异,并探讨了P值的意义。文章强调了T检验的适用条件,提到了t-分布和正态分布的区别,并提供了Excel中进行T检验的方法。最后,作者分享了qPCR处理软件的更新版,提供一键计算p值的功能。
摘要由CSDN通过智能技术生成

前言1:首先 向肖恩的好读者,好伙伴们道一声感谢,感谢一路的陪伴,最近有数位读者来询问问题,让我很开心。在此,也需要向大家道歉,大家在微信公众号的留言,只有48h内可以回复,而我是个学生,不能保证固定时间查看公众号。而且微信公众号没有提醒,有所怠慢请见谅咯。

前言2:2020是新的一年,然而,这新年伊始充满了坎坷,充满了让大家措手不及的意外,但我相信大家对生活的热情不减,生活还要继续,既然如此,何不重整行囊,砥砺前行。(毕竟我已在家葛优多日,是时候学习啦)

那么进入正题吧!

今天我们讲讲假设检验这个东西,并且会以qPCR数据处理为例子,应用假设检验,获得传说中小于0.05就很了不起就P值。

文末还有大大的彩蛋哦!!!

假设检验

假设检验这个东西,我们顾名思义,就是检验某一个假设,所以,这就很自然地引出两个重点,欸对,两个重点就是:

  1. 检验 (检验的方法)
  2. 假设 (检验的目的)

我们可以这么理解student t检验这个东西:

我有两组数据,A和B。我想知道A组数据和B组数据的均值是不是有显著性差异。 那么我们要先有一个假设,然后检验这个假设成不成立

一般来说,我们的假设是,A,B两组没有差异,然后计算在A,B没有差异的情况下,出现我们观察到的数据的概率。如果该概率<0.05,那么我们就说,这事发生的概率太低了,这个假设不靠谱,我们就否定原有的假设,进而相信A组数据和B组数据在统计上有显著性差异。

这里有两个统计学的术语:

  • 零假设:A和B统计学差异
  • 备选假设:A和B统计学差异

除了T检验,还有别的检验,不同的检验都有对应的假设检验方法,比如F-检验,卡方检验,秩和检验等,适用于不同的情况,有不同的目的,使用前要搞清楚。

Student T Test(T检验)

最常用的就是T检验,我们已经知道了他的整体逻辑了,但是我们还不清楚,他如何计算的,理解了计算过程,可以让我们更好地理解和解读p值,不去错误地使用p值,不迷信p值。

在理解计算原理之前,我们举个栗子,思考一下别人的人生:

B站的罗翔有一个CP,叫张三。

张三是个果农, 种了两种苹果树,一种叫A,一种叫B,他想知道哪种苹果树结的果子大。他在果子成熟时࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值