多元经验模态分解_极点对称模态分解方法(ESMD方法)介绍

本文介绍了极点对称模态分解(ESMD)方法,这是一种从数据中分离趋势、进行异常诊断和时-频分析的创新技术。ESMD作为EMD的拓展,适用于多种领域的非线性非平稳信号分析,区别于小波变换,它采用数据自适应的无基分解模式。文章通过实例展示了ESMD在趋势提取和频率分析上的优势,并提供了相关软件和参考文献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cfdcf2d2e33205174819abff6ed98c2f.png

向大家介绍一下我们的一项原创性研究成果,其特点如下:

极点对称模态分解方法(简称ESMD方法)是科学网和《中国科学报》报导过的创新性研究成果,在观测数据的趋势分离、异常诊断和时-频分析方面存在独特优势【见专著《极点对称模态分解方法》,感兴趣者也可关注王老师-大学数学看相关视频】。

ESMD方法是著名的Hilbert-Huang变换(又称经验模态分解方法,即EMD方法)的新发展,可用于大气和海洋科学、信息科学、数学、生命科学、经济学、生态学、地震学和机械工程等领域所有涉及数据分析的科研和工程应用。

ESMD方法与目前盛行的小波变换方法存在很大不同,各有侧重。小波变换的有基分解模式在信号的编码、储存和压缩等数据处理问题中具有明显优势,而ESMD方法数据自适应的无基分解模式更适用于科学探索。

高科技的核心是“数学技术”,而“数学技术”的主要手段是数值模拟和数据处理。有成熟数学模型的问题适用数值模拟,没有数学模型的问题只能依靠数据处理了。特别地,对于物理机制不明确的过程,研究有赖于观测实验。探索的方式往往是将杂乱无章的随机观测数据分解成不同频率的模态,从中寻找可能的变化规律

在随机数据分析方面,经典的方法是基于线性叠加原理的Fourier变换。它将一个观测时间序列映射到频率-能谱空间,其每一个模态都是振幅不变频率也

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值