【作者声明】
本文所有文字均为作者原创,所有图片均为作者本人亲自拍摄或制作。
版权所有,仅供阅读欣赏,禁止任何单位或个人以任何形式对本文的文字或图片进行包括但不限于复制、转载、引用、抄袭、截图、模仿、翻译、印刷等之中的一项或多项的行为。禁止将本文用于商业用途。
作者保留所有权利,请尊重作者的劳动成果,谢谢合作。
前言
定积分功能是相对高端的科学计算器上具备的功能之一,因为在许多实际使用场合下免去了人工计算积分的繁琐,所以应用也十分广泛。科学计算器上的定积分一般都是采用数值积分的方法来完成定积分的计算,虽然数值积分有许多理论上的方法,但从上世纪80年代到现在,计算器上使用的数值积分的方法只出现过两种。早期是辛普森积分法,到本世纪初有部分计算器开始使用高斯积分法。那么这两类数值积分方法的具体原理是什么?使用的效果有何特点?各自的优缺点是什么?至今为止没有任何计算器的说明书或者计算器的相关资料给出过答案。这些问题就是我们这篇文章要讨论的。
两种定积分功能简述
辛普森积分法
辛普森(Simpson)数值积分法在上世纪80年代的计算器上就已经出现了。例如上世纪80年代初的卡西欧可编程计算器fx-180P,通过按键编程的方式记录被积函数,然后进入积分的模式(∫dx),指定分区数

从W系列(fx-991W)开始,卡西欧旗舰科学计算器型号上开始加入定积分功能,例如fx-991MS就是使用的辛普森积分法:

TI的单行显示科学计算器与双行显示科学计算器(例如TI-36X II)也采用辛普森积分法来计算定积分,不过分区数的输入范围只能是1到99之间任意的整数。例如TI的可编程科学计算器TI-55 II,分区数指定为64时,积分的结果是0.6931472。(图片由 @小林露露 友情提供)

又比如夏普的EL-W991TL,也是使用的辛普森积分法:

使用辛普森积分法的计算器,分区数的输入都可以省略,计算器会自动指定一个合适的分区数。
高斯积分法
计算器上使用的高斯积分法是高斯-克朗罗德(Gauss-Kronrod)数值积分法。这一方法在2004年的卡西欧ES系列开始使用,经过对比会发现