数理逻辑(离散数学)学习笔记(6)

主范式

命题公式的主范式包括主析取范式主合取范式两种。
【定义1.17】在含有 n n n个文字的简单合取式中,若每个命题符号和其否定不同时存在,而二者之一必须出现且只出现一次,且第i个命题变元或其否定出现在从左边算起的第i个位置(若命题变元无下标,则按字典顺序排列),这样的简单合取式称为极小项
【定义1.18】若析取范式中的简单合取式都是极小项,则称该析取方式为主析取范式
[例]请说明 x ∧ ( ¬ x ∨ y ) &lt; = &gt; ( x ∧ ¬ x ) ∨ ( x ∧ y ) x∧(¬x∨y)&lt;=&gt;(x∧¬x)∨(x∧y) x(¬xy)<=>(x¬x)(xy)是否为主析取范式。
解:首先公式中含有两个变元(x,y),则其析取范式中的每个简单合取式(包括(x∧¬x)、(x∧y))中必须满足:①、每个命题符号和其否定不能同时存在,(x∧¬x)不满足这一点,(x∧y)满足;②、每个命题符号或其否定中的一个必须出现且只能出现一次, (x∧¬x)不满足这一点,(x∧y)满足;③、第i个命题变元或其否定出现在从左边算起的第i个位置上。由于字典序为x、y,所以从左边起第一个只能是x或¬x,第二个只能是y或¬y。 (x∧¬x)不满足这一点,(x∧y)满足。综上可得上式不满足。证毕。
可以列举出全体极小项为:
m 00...00 = ¬ x 1 ∧ ¬ x 2 ∧ . . . ∧ ¬ x i ∧ . . . ∧ ¬ x n m_{00...00}=¬x_1∧¬x_2∧...∧¬x_i∧...∧¬x_n m00...00=¬x1¬x2...¬xi...¬xn
m 00...01 = x 1 ∧ ¬ x 2 ∧ . . . ∧ ¬ x i ∧ . . . ∧ ¬ x n m_{00...01}=x_1∧¬x_2∧...∧¬x_i∧...∧¬x_n m00...01=x1¬x2...¬xi...¬xn
m 00...10 = ¬ x 1 ∧ x 2 ∧ . . . ∧ ¬ x i ∧ . . . ∧ ¬ x n m_{00...10}=¬x_1∧x_2∧...∧¬x_i∧...∧¬x_n m00...10=¬x1x2...¬xi...¬xn
. . . ... ...
m 11...11 = x 1 ∧ x 2 ∧ . . . ∧ x i ∧ . . . ∧ x n m_{11...11}=x_1∧x_2∧...∧x_i∧...∧x_n m11...11=x1x2...xi...xn
故,共有 2 n 2^n 2n个极小项( n n n为命题变元的个数 ¬ x 1 与 x 1 ¬x_1与x_1 ¬x1x1算一个)。
任意的公式A都可以由其对应的极小项来表示: A &lt; = &gt; γ 0 m 0 ∨ γ 1 m 1 ∨ γ 2 m 2 ∨ γ 3 m 3 ∨ . . . ∨ γ 2 n − 1 m 2 n − 1 , 其 中 γ i 取 0 或 1 。 m i 对 应 与 上 面 的 全 体 极 小 项 中 二 进 制 下 标 对 应 相 等 的 一 项 A&lt;=&gt;\gamma_0m_0∨\gamma_1m_1∨\gamma_2m_2∨\gamma_3m_3∨...∨\gamma_{2^n-1}m_{2^n-1},其中\gamma_i取0或1。m_i对应与上面的全体极小项中二进制下标对应相等的一项 A<=>γ0m0γ1m1γ2m2γ3m3...γ2n1m2n1,γi01mi故,可以由公式A的真值表和A对命题变元所确定的全体极小项来求出 γ i \gamma_i γi的值,从而实现公式A的主析取范式化。
[例]

x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn A = f ( x 1 , x 2 , . . . , x n ) A=f(x_1,x_2,...,x_n) A=f(x1,x2,...,xn) γ i \gamma_i γi
0 , 0 , . . . 0 0,0,...0 0,0,...01 γ 0 = 1 \gamma_0=1 γ0=1
1 , 0 , . . . 0 1,0,...0 1,0,...00 γ 1 = 0 \gamma_1=0 γ1=0
. . . ... ...1 γ i = 1 \gamma_i=1 γi=1
1 , 1 , . . . 1 1,1,...1 1,1,...11 γ n − 1 = 1 \gamma_{n-1}=1 γn1=1

A &lt; = &gt; m 0 + m i + m n − 1 A &lt;=&gt;m_0+m_i+m_{n-1} A<=>m0+mi+mn1
到这里我才真正的感受到了数理逻辑的魅力,是不是很牛逼!!你觉得呢??
【定理1.10】任何含 n n n个变元的非矛盾式的命题公式都存在唯一的与之等值的主析取范式。
生成一个公式的主析取范式的算法如下:
(1)先求出该公式的一个析取范式。
(2)如果该析取范式的某个简单合取式A中既不含有某个命题符号 x x x,也不含有 ¬ x ¬x ¬x,则该简单合取式变为如下形式: ( A ∧ x ) ∨ ( A ∧ ¬ x ) (A∧x)∨(A∧¬x) (Ax)(A¬x)。这样做的正确性由等值式(E6)和(E13)保证(数理逻辑(离散数学)学习笔记(2)的【定理1.2】)。
(3)消除重复出现的命题变元或命题变元的否定,矛盾式及重复出现的极小项,并将每个极小项的命题符号或其否定按下标顺序或字典顺序排列。
[例]求 ( ¬ x → y ) ∧ ( x → z ) (¬x→y)∧(x→z) (¬xy)(xz)的主析取范式。
方法一:
step1:先化为析取范式:
( ¬ x → y ) ∧ ( x → z ) &lt; = &gt; ( y ∧ ¬ x ) ∨ ( x ∧ z ) ∨ ( y ∧ z ) (¬x→y)∧(x→z)&lt;=&gt;(y∧¬x)∨(x∧z)∨(y∧z) (¬xy)(xz)<=>(y¬x)(xz)(yz)
step2:判断是否为主析取范式,不是则变为主析取范式
式中共有三个变元,所以器每个几下想都应该含有且仅含有一次这三个变元或其否定。故step1中得到的不是主析取范式。
( y ∧ ¬ x ) &lt; = &gt; ( y ∧ ¬ x ∧ ¬ z ) ∨ ( y ∧ ¬ x ∧ z ) . . . . . . . ① (y∧¬x)&lt;=&gt;(y∧¬x∧¬z)∨(y∧¬x∧z).......① (y¬x)<=>(y¬x¬z)(y¬xz).......
( x ∧ z ) &lt; = &gt; ( y ∧ x ∧ z ) ∨ ( ¬ y ∧ x ∧ z ) . . . . . . . . . . . . . . ② (x∧z)&lt;=&gt;(y∧x∧z)∨(¬y∧x∧z)..............② (xz)<=>(yxz)(¬yxz)..............
( y ∧ z ) &lt; = &gt; ( y ∧ x ∧ z ) ∨ ( y ∧ ¬ x ∧ z ) . . . . . . . . . . . . . . ③ (y∧z)&lt;=&gt;(y∧x∧z)∨(y∧¬x∧z)..............③ (yz)<=>(yxz)(y¬xz)..............
step3:将step2中重复出现的极小项只取一次,且按照字典序放置每一个变元。然后形成主析取范式。
在step2中,将重复出现的极小项只取一次,且按照字典序放置每一个变元。
( ¬ x → y ) ∧ ( x → z ) &lt; = &gt; ( ¬ x ∧ y ∧ ¬ z ) ∨ ( ¬ x ∧ y ∧ z ) ∨ ( x ∧ y ∧ z ) ∨ ( x ∧ ¬ y ∧ z ) . . . . . 结 束 (¬x→y)∧(x→z)&lt;=&gt;(¬x∧y∧¬z)∨(¬x∧y∧z)∨(x∧y∧z)∨(x∧¬y∧z).....结束 (¬xy)(xz)<=>(¬xy¬z)(¬xyz)(xyz)(x¬yz).....
方法二:
真值表技术

x x x y y y z z z ( ¬ x → y ) ∧ ( x → z ) (¬x→y)∧(x→z) (¬xy)(xz) γ i \gamma_i γi m i m_i mi
0000 γ 000 = 0 \gamma_{000}=0 γ000=0 m 000 m_{000} m000
1000 γ 100 = 0 \gamma_{100}=0 γ100=0 m 100 m_{100} m100
0101 γ 010 = 1 \gamma_{010}=1 γ010=1 m 010 m_{010} m010
1100 γ 110 = 0 \gamma_{110}=0 γ110=0 m 110 m_{110} m110
0010 γ 001 = 0 \gamma_{001}=0 γ001=0 m 001 m_{001} m001
1011 γ 101 = 1 \gamma_{101}=1 γ101=1 m 101 m_{101} m101
0111 γ 011 = 1 \gamma_{011}=1 γ011=1 m 011 m_{011} m011
1111 γ 111 = 1 \gamma_{111}=1 γ111=1 m 111 m_{111} m111

由真值表可得: A = γ 000 m 000 ∨ γ 100 m 100 ∨ γ 010 m 010 ∨ γ 001 m 001 ∨ γ 101 m 101 ∨ γ 011 m 011 ∨ γ 111 m 111 A = \gamma_{000}m_{000}∨\gamma_{100}m_{100}∨\gamma_{010}m_{010}∨\gamma_{001}m_{001}∨\gamma_{101}m_{101}∨\gamma_{011}m_{011}∨\gamma_{111}m_{111} A=γ000m000γ100m100γ010m010γ001m001γ101m101γ011m011γ111m111
将真值表的 γ i \gamma_i γi值代入得: ( ¬ x → y ) ∧ ( x → z ) &lt; = &gt; ( ¬ x ∧ y ∧ ¬ z ) ∨ ( ¬ x ∧ y ∧ z ) ∨ ( x ∧ y ∧ z ) ∨ ( x ∧ ¬ y ∧ z ) . . . . . 结 束 (¬x→y)∧(x→z)&lt;=&gt;(¬x∧y∧¬z)∨(¬x∧y∧z)∨(x∧y∧z)∨(x∧¬y∧z).....结束 (¬xy)(xz)<=>(¬xy¬z)(¬xyz)(xyz)(x¬yz).....
【定义1.19】在含有 n n n个文字的简单析取式中,若每个命题符号和其否定不同时存在,而二者之一必须出现且只出现一次,且第 i i i个命题变元或者否定出现在从左边算起的第 i i i个位置上(若命题变元无下标,则按照字典序排列),这样的简单析取式称为极大项
【定理1.11】任何含有 n n n个变元的非重言式(永真式)的命题公式都存在唯一的与之等值的主合取范式。
全体极大项为:
M 11...11 = ¬ x 1 ∨ ¬ x 2 ∨ . . . ∨ ¬ x i ∨ . . . ∨ ¬ x n M_{11...11}=¬x_1∨¬x_2∨...∨¬x_i∨...∨¬x_n M11...11=¬x1¬x2...¬xi...¬xn
M 11...10 = x 1 ∨ ¬ x 2 ∨ . . . ∨ ¬ x i ∨ . . . ∨ ¬ x n M_{11...10}=x_1∨¬x_2∨...∨¬x_i∨...∨¬x_n M11...10=x1¬x2...¬xi...¬xn
M 11...01 = ¬ x 1 ∨ x 2 ∨ . . . ∨ ¬ x i ∨ . . . ∨ ¬ x n M_{11...01}=¬x_1∨x_2∨...∨¬x_i∨...∨¬x_n M11...01=¬x1x2...¬xi...¬xn
. . . ... ...
M 00...00 = x 1 ∨ x 2 ∨ . . . ∨ x i ∨ . . . ∨ x n M_{00...00}=x_1∨x_2∨...∨x_i∨...∨x_n M00...00=x1x2...xi...xn
共有 2 n 2^n 2n个极大项。
【定义1.20】若取合取范式中的简单析取式都是极大项,则称该合取式为主合取范式
利用基本等值式求一个公式的主合取范式的步骤:
(1)先求出该公式的合取范式
(2)如果该合取范式的某个简单析取式A中既不含有某个命题符号也不含有其否定,则该简单析取式变为如下形式: ( A ∨ x ) ∧ ( A ∨ ¬ x ) (A∨x)∧(A∨¬x) (Ax)(A¬x)
(3)消除重复出现的命题变元或命题变元的否定、重言式和重复出现的极大项,并将每个极大项的命题符号或者其否定按下标顺序或字典序排列。
[例]试依据下表所示的真值表,求出命题公式A的主析取范式和主合取范式。

x x x y y yA
001
010
100
111

解:求主析取范式:
m 00 = ¬ x ∧ ¬ y m_{00} = ¬x∧¬y m00=¬x¬y
m 01 = ¬ x ∧ y m_{01} = ¬x∧y m01=¬xy
m 10 = x ∧ ¬ y m_{10} = x∧¬y m10=x¬y
m 11 = x ∧ y m_{11} = x∧y m11=xy
故,有上表可得 A &lt; = &gt; ( ¬ x ∧ ¬ y ) ∨ ( x ∧ y ) A &lt;=&gt;( ¬x∧¬y)∨( x∧y) A<=>(¬x¬y)(xy)
求主合取范式:
M 00 = x ∨ y M_{00} = x∨y M00=xy
M 01 = x ∨ ¬ y M_{01} = x∨¬y M01=x¬y
M 10 = ¬ x ∨ y M_{10} = ¬x∨y M10=¬xy
M 11 = ¬ x ∨ ¬ y M_{11} = ¬x∨¬y M11=¬x¬y
故,由上表可得 A &lt; = &gt; ( x ∨ ¬ y ) ∧ ( ¬ x ∨ y ) A &lt;=&gt;( x∨¬y)∧( ¬x∨y) A<=>(x¬y)(¬xy)

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值