我们平时写API,时效性太慢了。而且花费的成本代价太高。特别是有严重的滞后性。当平台多,业务多,迭代多的时候,接口自动化实现出来的时候,黄花菜都凉了。
有没有一个方式能够快速测试API呢?
最近实践了一下httprunner, 可以作为我们的API自动化测试的一个补充,高低搭配。
HttpRunner 是一个基于 Python 开发的测试框架,可以运行在 macOS、Linux、Windows 系统平台上。
它的原理也很简单 总体的思想就是用代理工具录制,然后生成我们常见的json格式,通过设置变量,替换一些常量,加上一些验证点,批量发送请求,生成测试报告,从而达到测试接口的目的。
安装:
pip install httprunnerorpip install -U HttpRunner
录制:
用charles录制,保存成har文件格式。
运行:
生成用例har2case Documents/cae1/UAT_Cool.harhar2case Documents/cae1/UAT_Cool.har -2y运行用例hrun Documents/cae1/UAT_Cool.jsonhrun Documents/cae1/UAT_Cool.yml
然后就可以在report中看测试报告了。
以上是一个很简单的过程,一般对于正规的测试框架来说,我们需要继续以下一些步骤来整理我们的数据。
整理
生成测试用例
参数关联
变量声明与应用
抽取公共变量
参数化数据
优化测试结果
对于有些变量,需要上下文的,这个框架可以用extract来获取,然后用变量替换
这个过程如果用手工的话,比较麻烦,可以写个脚本来自动实现
import reimport jsonjson_file = "/Users/anderson/work/api/case1/UAT_Cool.json"def rewrite_file(): with open(json_file, 'r') as load_f: load_dict = json.load(load_f) load_dict["config"]["base_url"] = "http://m.cn" load_dict["config"]["verify"] = False value = {"userName": "t74951", "password": "111111"} (load_dict["config"]["variables"]).update(value) if "name" in load_dict["teststeps"][0]: load_dict["teststeps"][0]["extract"] = [ {"token": "content.serviceResponse.token", "sessionId": "content.serviceResponse.sessionId"}] if "userName" and "password" in load_dict["teststeps"][0]["request"]["json"][ "serviceRequest"]: load_dict["teststeps"][0]["request"]["json"]["serviceRequest"]["userName"] = "$userName" load_dict["teststeps"][0]["request"]["json"]["serviceRequest"]["password"] = "$password" for i in range(len(load_dict["teststeps"])): if "url" in load_dict["teststeps"][i]["request"]: load_dict["teststeps"][i]["request"]["url"] = re.sub("[a-zA-z]+://.*.(com|cn)", "", load_dict["teststeps"][i]["request"]["url"]) str = json.dumps(load_dict) obj = re.compile(r'"sessionId": "(w+)"') ret = obj.findall(str) for i in ret: str = str.replace(i, "$sessionId") obj = re.compile(r'"token": "(w+)"') ret = obj.findall(str) for i in ret: str = str.replace(i, "$token") str = json.loads(str) with open(json_file, "w") as dump_f: json.dump(str, dump_f, indent=4)rewrite_file()
增加checkpoint:
现在还有一个问题,就是checkpoint太少了,只是检测了状态是否200,如果手动增加,则太慢了。有一个办法就是自动增加。可以写yaml文件,将需要检测的部分,都放到文件里面。例如:
oneapp: coursestructure: api: /services/api/mobile/service/coursestructure eq: - ["content.serviceResponse.level.levelCode", "0A"]
写个脚本:
import jsonimport osimport reimport shutilhar_dir = '/Users/anderson/Documents/case1'json_dir = '/Users/anderson/Documents/case1'import jsonimport yamlclass YAML(): # Write YAML file def write_yml(self, save_path, data): with open(save_path, 'w', encoding='utf8') as outfile: try: yaml.safe_dump(data, outfile, default_flow_style=False, allow_unicode=True) except yaml.YAMLError as exc: print(exc) # Read YAML file def read_yml(self, load_path): with open(load_path, 'r') as stream: try: data_loaded = yaml.safe_load(stream) except yaml.YAMLError as exc: print(exc) return data_loadeddef add_checkpoint(target_file): file_path = "/Users/anderson/Documents/api.yml" yaml_file = YAML().read_yml(file_path)["oneapp"] json_raw = open(target_file, "r") json_file=json.loads(json_raw.read()) print(json_file) name_list = [] for i, ele in enumerate(json_file["teststeps"]): name_list.append(ele["name"]) for key in yaml_file.keys(): if yaml_file[key]["api"] in name_list: index = name_list.index(yaml_file[key]["api"]) if len(yaml_file[key]["eq"]): for checks in yaml_file[key]["eq"]: (json_file["teststeps"][index]["validate"]).append({"eq": checks}) # json_file = json.dumps(json_file, indent=4) with open(target_file, "w") as dump_f: json.dump(json_file, dump_f, indent=4) print(json_file) json_raw.close()def run_case(path): run_cmd = "hrun {} --failfast --log-level info".format(path) os.system(run_cmd)# rewrite_file()if __name__ == "__main__": #check_folder(json_dir) extract_har(har_dir) source_json = [x for x in os.listdir(har_dir) if x.endswith('json')] if len(source_json): for source in source_json: rewrite_file(os.path.join(har_dir, source), os.path.join(json_dir, source)) target= os.path.join(json_dir, source_json[0]) print(target) add_checkpoint(target) if is_json_exist: json_file = [x for x in os.listdir(json_dir) if x.endswith('json')] for source in json_file: run_case(os.path.join(json_dir, source))
我们可以写个脚本,自动增加需要测试的点,效率增加很多。
这样,生成的report里面也可以看到这个checkpoint点了。
管理case:
工具用了一个命令来管理case. 按照这种格式,就很容易管理case了。
如果有多个环境的话,再增加一点代码,用来数据管理和环境管理,可以结合jenkins一起使用。如果接口有变的话,重新录制一套也不需要花多少时间,这样的话,就能快速迭代了。