统计学中p值计算公式_统计学中的p值怎么算,具体步骤

P值即概率,反映某一事件发生的可能性大小。

P值的计算:

一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:

左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}

右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}

双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。

若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。

计算出P值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:

如果α > P值,则在显著性水平α下拒绝原假设。

如果α ≤ P值,则在显著性水平α下接受原假设。

在实践中,当α = P值时,也即统计量的值C刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。

扩展资料:

用SAS、SPSS等专业统计软件进行假设检验,在假设检验中常见到P值( P-Value,Probability,Pr),P值是进行检验决策的另一个依据。

统计学根据显著性检验方法所得到的P 值,一般以P < 0.05 为有统计学差异, P<0.01 为有显著统计学差异,P<0.001为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于0.05 、0.01、0.001。

实际上,P值不能赋予数据任何重要性,只能说明某事件发生的几率。统计结果中显示Pr > F,也可写成Pr( >F),P = P{ F0.05 > F}或P = P{ F0.01 > F}。

参考资料来源:

统计学中的p与t是两个常用的概念,它们在假设检验中起到了重要的作用。下面是一张p与t对应表: | t | p | |----|----| | 1.00 | 0.32 | | 1.64 | 0.10 | | 1.96 | 0.05 | | 2.33 | 0.01 | | 2.58 | 0.005 | | 3.00 | 0.002 | | 4.00 | 0.0001 | 在假设检验中,t用于检验样本均是否与总体均存在显著差异。建立假设检验后,计算得到样本的t后,需要与一个临界比较,该临界是由显著性水平和自由度决定的。如果计算得到的t超过了临界,就可以拒绝原假设,认为样本均与总体均存在显著差异。 而p则是假设检验中的另一个重要指标,它表示的是当原假设正确时,观察到的样本结果出现的概率。在判断假设检验的结果时,我们可以根据p与显著性水平进行比较。如果p小于显著性水平,通常取0.05作为显著性水平的话,我们就可以拒绝原假设,认为观察到的样本结果是显著的,即存在统计学上的差异。 通过参照上述的p与t对应表,我们可以根据计算得到的t找到对应的p。比如,如果计算得到的t是1.96,那么它对应的p就是0.05。根据p可以判断出假设检验的结果是否显著。而临界则由显著性水平和自由度决定,可以通过查找统计表得到。 总之,p与t对应表是统计学中常用的工具,帮助我们根据t找到对应的p,进而判断假设检验的结果是否显著。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值