fft的c语言和matlab对比_傅里叶级数(FS)、傅里叶变换(FT)快速傅里叶变换(FFT)及量子傅里叶变换(QFT)之间推导关系...

1 引言

傅里叶级数 (Fourier Series, FS) 是《高等数学》中遇到的一个重要的级数,它可以将任意一个满足狄利克雷条件的函数为一系列三角级数的和。最早由法国数学家傅里叶在研究偏微分方程的边值问题时提出,极大地推动了偏微分方程理论的发展。根据欧拉公式及其推导式,傅里叶级数又可以推导出《信号与系统》中最重要的傅里叶变换(Fourier Transform, FT)。FT由于可以将信号从时域到频域来回变换,分析信号的成分,从而广泛应用于信号处理领域。在计算机处理中,信号被离散化为采样点,针对离散采样点的傅里叶变换成为了《数字信号处理》中的离散傅里叶变换(Discrete Fourier Transform, DFT)。但是由于DFT计算量过于庞大(计算复杂度高),1965年由J.W.库利和T.W.图基提出了最早版本的快速傅里叶变换(Fast Fourier Transform, FFT),将计算量减少了几个量级,从而使得计算机更加快速地处理信号,从而促进通信、信号处理领域的快速发展。近年来由于量子计算机的兴起,量子傅里叶变换(Quantum Fourier Transform, QFT)更是可以对FFT进行指数级别的加速。

由于这一系列变换出现在不同学科中,老师在讲课时也是各自独立讲解,所以大多数同学(包括我)对其中的似曾相识的公式,一直分不清有什么区别和联系,这篇文章着重于这一系列傅里叶算法的直接的相互推导。

2 一维傅里叶级数(FS)

2.1 周期性

首先写出傅里叶级数的表达式:

其中,

,
是FS的系数,也是我们需要求的参数,若它们确定,则

即可被分解为N阶的FS。

由于

,因此上式可以改写为:

时,
是周期为
的周期函数,也是FS中周期最大的一组分量。我们取周期
,其他分量,在
中应该包含了多个完整的周期。此时有:

2.2 正交性

何为正交?正交是线性代数中的概念,即列向量a, b的内积为0,就称这两向量正交。正交还可以不严谨地理解为这两组向量之间没有关系。

同样地,借鉴这个定义,在连续函数中的正交为:

此时,我们令

,有:

积分是一个线性算符,积分和等于和的积分,上式可以看做两个三角函数分别积分。当

时,无论
还是
均大于等于1,因此它们的周期必然小于等于
。根据前面的结论有:

时,上式变为:

前一项,积分明显为0,后一项为

同理,还可以尝试令

,在此不再赘述,可以得到
结论:在FS中每两个不同的级数之间存在两两正交关系。

2.3 求系数

,

首先看

怎么求。令:

就是把要分解的函数和傅里叶级数同时做了积分,等号右边可以拆为2N+1个积分和,根据前面的周期性可知,除了第一项以外,后面的项的积分均为0。故上式可以化简为:

这里的表达式就说明了

其实是函数的均值。

接着,我们尝试求

,令:

其中,

也是1~N中的一个值,为了便于和
区分开来,方便叙述。

利用上面证明的周期性和正交性,我们可以知道,只有当

时,积分结果才不为0,其余均为0。故上式可以化简为:

故:

同理,我们可以得到正弦分量的系数。最后结果为:

到这里,所有FS的系数就能求出来了。但是这里有个比较诡异的地方,当

时,上式算出的
与我们之前算出的
不等,为了保持k的延续性,通常情况是用
表示FS的第一项。

3 傅里叶变换(FT)

3.1 FT和FS之间的关系

首先,把傅里叶变换的公式写出来:

然后,回到傅里叶级数。

根据欧拉公式

及其一个简单的变形:

代入到傅里叶级数中:

傅里叶级数变为:

变换后的系数

求解方式可以根据上面
求得。

的定义域是
,且
是非周期函数,我们可以对
进行周期延拓,认为它在定义域内为一个周期;而
前所述,在
中最少有1个周期,上式不妨写为:

所以,

时,
间隔很小,可视作连续。

由于

内为一个周期,也可以表示为在
内也是一个周期(周期延拓)。故上式写为

,
替换,
替换就出现了傅里叶变换的公式

3.2离散傅里叶变换

在计算机中,我们不可能令

,这样
仍被当做离散量,这样一来积分号就变成了求和号,上式可以写作:

因此我们就得到了能够被计算机执行的离散傅里叶变换的函数式。

为便于理解,先带个具体数据进去考虑。若采样的数据点为8,频率分量个数也为8。用

来表示这种情况下的DFT函数。

上面这些式子用矩阵表示为,假设有个矩阵

右乘一个时域组成的列向量得到一个频域组成的列向量。

cc49e55ceba6b741224ac0de1a01d1b9.png

将上面的一组求和式翻译成矩阵

fe171652906a5eae4b00e5815db9f00e.png

为了便于观察,令

矩阵中的
。上式可以写为:

264183130304c67164b3fcf788422e18.png

根据

的周期性:
可进一步化简。

04775290ad15ef1fc86cbadd46747d05.png

3.3 快速傅里叶变换

从3.2节,我们知道了,要完成一次DFS需要用一个矩阵去乘以一个时域组成的列向量,而这个矩阵大小与时域上的采样点和频域分量的个数有关。若它们的个数为

,则上面的一个矩阵乘法包含
次数值乘法,这当
较大时,需要消耗大量的计算机资源。好在构成DFS的矩阵有着一定的特殊规律,可以使用分治法,使其只需要大约
次数值乘法,即可完成工作。

仍然以

为例,不难看出
是一个正交对称阵(实际上所有DFS构成的矩阵都是正交对称阵)。交换
偶数列位置提到奇数列前面。

186aa966baeacd193965be1a8f8abbe2.png

只差一个奇偶置换矩阵

e52eb4a45038dc7723af5b24b2dd1237.png

同样地,我们还可以写出

9f436cded5b0cc3088bf994d1a620ef9.png

同样地,令

矩阵中的

值得注意的是

(周期性)

又可以写为:

242008b1218407b8246afda9c26ef9f3.png

左边4列中包含了两个
而右边4列是由系数和
共同组成。因此
又可以被写为:

58e720d5b0e58342fd77414ac8a97e7b.png

其中

为单位阵,
是一个对角阵。

915a8390eebeed02d832d80e6bee853e.png

最后

55edc1648c56212e28f5e9937e89aed4.png

这样一来上面这个矩阵需要多少次乘法呢?由于

是奇偶置换矩阵,在计算机中是只需要移位,不需要做乘法运算,故

555d9be654f9891b698279fcddc724eb.png

显然,主要的计算量在于

,共计
次数值乘法,
是对角阵,
需要额外4次乘法,
是它的相反数,不计入乘法次数。最后我们就将原本需要
次乘法变为了
次乘法。

同理,我们还可以对

进一步拆分为

5995b9db13bec39a44e7de31f86fcb6c.png

带入

4b853baeee4875d7fad1697a6f52f176.png

化简下:

f5d30b578e824b9e0c997aea4712243d.png

此时需要的乘法数量为

推广到更一般的情况,仍然可以使用类似上述的递归方式,最后FFT的计算复杂度变为

4、量子傅里叶变换

如果对量子逻辑门有一定了解的同学,看到上面最终的递归化简式,已经发现和量子逻辑门很像了。比如我们看

65e7c1f46dc1ee181bdef6c883ef6fe3.png

那这不就是

门嘛。

再比如

a331dd66f08685216fdb4ad836abc3b1.png

也可以分解成量子门的形式(中间省略了归一化参数):

f7e4a0dab145d2c9cc9b5a24ed087b7b.png

其中

为哈德玛门,
的单位阵,
为受控S门。

也可以分解成量子门的形式(中间省略了归一化参数):

07f4dd28c2dc9df9b7ae15c2e343c8e1.png

其中,

相当于
的单位阵。

相当于
门。

接着 我们观察置换矩阵

,列出这两个的真值表

5004a40080d4f7e3f77cb579ce45e04f.png

dfa680cc126b579d05fc998d6966391e.png

不难发现

就相当于SWAP门

28d38cba467c489ba86019e54fc77045.png

根据

的递归表达式可以看出,矩阵左乘向量顺序为先
,它们的真值表变换如下

fcd547b736df1818946222164cd23b05.png

列出合并后的真值表,那这不就是1,3 qubit交换位置嘛。

753e72bde27225acf08c170d7ae4fbf4.png

即:

4ae26ecd0208673f4f80472e360e2f12.png

整个

的递归式就可以写成(中间省略了归一化参数):

量子电路如下:

e93ef4026c81a03db8bec002daa241dc.png

有兴趣的可以对比一下与《量子计算与量子信息》书中盒子5.1是否是等价的电路。如果以基本量子门作为计算单元的话,QFT的复杂度则只需

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 嗨!首先感谢你的问题。Matlab可以使用内置函数fft进行傅里叶变换计算。下面是一个简单的示例代码: ``` % 定义时间序列 t = linspace(0,2*pi,1000); % 定义信号 y = sin(2*pi*5*t) + cos(2*pi*10*t); % 计算傅里叶变换 Y = fft(y); % 计算频率序列 f = linspace(0,1,1000); % 绘制频谱图 plot(f,abs(Y)); ``` 关于傅里叶变换解偏微分方程和积分方程,这是一个非常广泛的领域,Matlab在这个领域也有很多的工具箱和函数。具体的实现方法可以根据不同的方程和问题进行选择和调整。如果你有具体的问题需要求解,可以提供更多的信息,我可以为你提供更具体的帮助。 ### 回答2: Matlab是一种功能强大的科学计算软件,可以方便地实现傅里叶变换Fourier Transform)和傅立叶级数展开(Fourier Series Expansion)。 傅里叶变换是一种将一个信号时域(时间域)转换到频域(频率域)的数学工具,通过分析信号的频谱特征,可以对信号进行频谱分析、滤波、降噪等操作。在Matlab中,可以使用fft()函数来实现离散傅里叶变换(DFT),ifft()函数来实现离散傅里叶逆变换(IDFT),fftshift()函数用于对频谱进行中心化处理。 傅立叶级数展开可以将一个周期信号表示为一系列弦和余弦函数的线性组合,它在信号分析的应用中被广泛使用。在Matlab中,可以使用FourierSeries()函数来实现傅立叶级数展开,可以指定展开的周期、频率分量的数量和振幅等参数。 傅立叶变换在偏微分方程和积分方程的解中也有重要应用。通过将偏微分方程或积分方程转化到频率域,可以简化解过程。在Matlab中,可以通过傅里叶变换解时谐偏微分方程(Time-Harmonic PD Es),即偏微分方程的解具有频率依赖性质。通过将时谐偏微分方程转化为代数方程,可以使用Matlab解器(如solve()函数)得到解析解。 对于积分方程,傅立叶变换同样可以发挥作用。可以通过将积分方程转化为代数方程,然后使用Matlab解器进行解。在这个过程中,使用傅里叶变换的目的是对局部波的响应进行频谱分析,并将问题转化为频域下的代数方程解。 综上所述,Matlab提供了丰富的函数和工具,可以方便地实现傅里叶变换和傅立叶级数展开,并应用于偏微分方程和积分方程的解。这些功能使得Matlab成为工程学、物理学以及其他科学领域中重要的数值计算信号处理工具。 ### 回答3: Matlab可以用来实现傅立叶变换,从而解偏微分方程和积分方程。 傅立叶变换是一种重要的数学工具,可以将一个函数表示为一系列弦和余弦函数的组合。Matlab中有现成的函数fft可以实现离散傅立叶变换(DFT),而ifft函数可以进行逆傅立叶变换。 对于偏微分方程,我们可以通过傅立叶变换将微分方程转化为代数方程。首先,我们将待函数进行傅立叶变换,得到其频率域表示。然后,我们可以将微分方程中的导数操作转化为乘法操作,从而得到一个代数方程。通过解这个代数方程,我们可以得到频率域中的解。最后,使用ifft函数将频率域中的解进行逆傅立叶变换,得到时域中的解。 对于积分方程,我们也可以利用傅立叶变换来解。通过将积分方程进行傅立叶变换,可以将其转化为代数方程。然后,我们可以通过解这个代数方程来得到频率域中的解。最后,再将频率域中的解进行逆傅立叶变换,得到时域中的解。 总之,利用Matlab中的fft和ifft函数,我们可以利用傅立叶变换来解偏微分方程和积分方程。这为我们研究和解决各种数学问题提供了一种有效的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值