量子算法介绍——量子计算机上的傅里叶算法

本文介绍了量子离散傅里叶变换(QFT)在量子计算中的重要性,它是Shor算法、QPE、HHL和QSVM等算法的基础。QFT相较于经典傅里叶变换具有更低的计算复杂度,通过量子线路实现指数级加速。文章详细阐述了QFT与经典傅里叶变换的联系,以及如何在量子比特上构建QFT的积形式,并通过量子门操作逐步制备傅里叶变换矩阵。最后,讨论了QFT在量子计算机上有效的原因和应用前景。
摘要由CSDN通过智能技术生成

一、整体介绍

量子计算的一个非常重要的发现就是量子离散傅里叶变换(QFT),量子傅里叶变换的线路来源和想法都是基于快速傅里叶变换(FFT)。基于QFT算法,目前已经开发出来了许许多多的具有指数级加速的算法,例如Shor算法,相位估计算法(QPE),HHL算法,以及QSVM算法等等。而QFT算法的最主要的优势在于量子计算机上能够以很低的复杂度进行该矩阵的制备。

二、经典和量子傅里叶的联系

我们都知道离散傅里叶变换的公式为:y_k=\frac{\ 1}{\sqrt{N}}\sum_{j=0}^{N-1}X_j e^{2\pi ijk/N},

将其写成量子形式的傅里叶变换就得到公式为:\left | j \\ \right \rangle\rightarrow \frac{1}{\sqrt{N}}\sum _{k=0}^{N-1}e^{2\pi ijk/N} \left | k \\ \right \rangle

同样的,对于一个任意初始的量子态对应的QFT为:\sum _{j=0}^{N-1}X_j\left | j \\\right \rangle\rightarrow \sum _{k=0}^{N-1}y_k\left | k \\\right \rangle

然后我们将其推导变成如下的积形式:

再次之前需要先进行一些说明,由于QFT是在量子的二进制比特上的,所以对于\left | j \\ \right \rangle\rightarrow \frac{1}{\sqrt{N}}\sum _{k=0}^{N-1}e^{2\pi ijk/N} \left | k \\ \right \rangle

来说,我们需要进行变换的\left | j \\ \right \rangle是以二进制的形式存储在量子比特上的,也就是有\left | j \\ \right \rangle=\left | j_1 j_2 ...j_n\\ \right \rangle,即等价的有:j=j_12^{n-1}+j_22^{n-2}+...+j_n2^{0}

我们从开始进行推导

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值