python networkx教程_Python Networkx基础知识及使用总结

本文介绍了复杂网络的定义和特性,包括小世界、集聚程度和幂律分布。接着,讨论了网络结构的相关度量,如度、路径长度、联通度和集聚系数。在Python中,NetworkX库用于建立、操作和分析图。文章详细讲解了如何使用NetworkX创建图、添加节点和边、删除元素以及遍历图。最后,列举了一些NetworkX的常用属性和方法,如度数、度直方图和密度等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、图的基础知识

1.复杂网络(Complex Network)定义与特性

钱学森给出了复杂网络的一个较严格的定义:具有自组织、自相似、吸引子、小世界、无标度中部分或全部性质的网络称为复杂网络。

复杂网络一般具有的特性:

(1)小世界。大多数网络尽管规模很大但是任意两个节点间却又一条相当短的路径。

(2)集群即集聚程度(Clustering coefficient)。也就是网络集团化的程度,这是一种网络的内聚倾向。联通集团概念反映的是一个大网络中各集聚的小网络分布的相关联系状况。例如朋友圈中的一个小团体与另一个小团体之间的相互关系。

(3)幂律(Power law)的度分布概念。度的相关性反映顶点之间关系的联系紧密性。

2.网络结构的相关度量

度(Degree)——连接在某个节点上的边的数量。度描述的是节点的连接情况。一个网络的度是它包含的所有节点的度的平均数。(计算方法:网络中边数量的2倍除以节点数)

有向图中顶点入度之和等于顶点出度之和。

路径长度(Path length)——节点与节点之间的距离,即两节点间所需经过的最小边数。

平均路径长度——网络中所有成对节点之间的路径总数除以网络中所有成对节点的数目(节点的对数),就是平均路路径长度。

联通度(Connectivity)——图中的这样的k个节点,从图中去掉所有的这些节点以及它们关联的所有边后,所得到的图不再是连通图或是平凡图,称k为图的节点连通度。

集聚系数(Clustering coefficient)——图中所有构成的三角形个数除以由节点构成三角形的最大可能数(最大可能数是n*(n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值