matlab疲劳驾驶_疲劳驾驶有危险!试试AR版疲劳驾驶检测系统

本文首发于微信公众号“RideIP玩转知识产权”(ID:RideIP0606)

疲劳驾驶,是指驾驶人在长时间连续行车后,产生生理机能和心理机能的失调,而在客观上出现驾驶技能下降的现象。疲劳后继续驾驶车辆,会感到困倦瞌睡,四肢无力,注意力不集中,判断能力下降,甚至出现精神恍惚或瞬间记忆消失,出现动作迟误或过早,操作停顿或修正时间不当等不安全因素,极易发生道路交通事故。

现有的技术方案

现有一种基于脑电图识别的疲劳驾驶检测方案,是将脑电采集单元采集的驾驶者的EEG(脑电波,Electroencephalogram)信号,以及测量的驾驶者操纵方向盘的旋转角度输入到疲劳驾驶状态评估模型中,然后由疲劳驾驶状态评估模型评估驾驶者当前的疲劳状态。

该疲劳驾驶状态评估模型在进行疲劳状态评估前,需要先进行训练;也就是说,需要采集驾驶者在清醒状态、疲劳状态及非常疲劳状态下的EEG信号及相应方向盘驾驶操作信息对疲劳驾驶状态评估模型进行训练,使得该疲劳驾驶状态评估模型可以针对该驾驶者进行正确的疲劳状态评估。

然而,由于不同驾驶者身体差异较大,不同驾驶者的EEG信号差异也就很大;因此,不同驾驶者所使用的疲劳驾驶状态评估模型,需要针对不同的驾驶者个体分别进行训练;也就是说,由一个驾驶者训练得到的疲劳驾驶状态评估模型是不能用于评估另外一个驾驶者的疲劳状态的。这使得现有的基于脑电图识别的疲劳驾驶检测方案的实际可行性较差,驾驶者需要对疲劳驾驶状态评估模型进行长时间的训练,分别获取清醒状态、疲劳状态及非常疲劳状态下的EEG信号才能完成对疲劳驾驶状态评估模型的训练。

解读:由一个驾驶者训练得到的疲劳驾驶状态评估模型无法用于评估另外一个驾驶者的疲劳状态,使得现有的基于脑电图识别的疲劳驾驶检测方案的实际可行性较差。

【京东方的技术方案】

京东方的一份名为“一种基于AR技术的疲劳驾驶检测系统及方法”(公开号:CN109875583A)提出了一种解决方案,该专利申请于2019年2月19日,公开于2019年6月14日。

927502c0334da873830692c30a6cc258.png

图1

如图1所示,本发明实施例提供的一种基于AR技术的疲劳驾驶检测系统,包括:AR设备101、脑电信号采集设备102、疲劳状态判断模块103。

其中,AR设备101用于拍摄路况视频图像,并将从路况视频图像中识别出的障碍物,以设定频率闪烁显示于汽车的前挡风玻璃相应位置处,作为驾驶者的诱发脑电信号的激励信号。 脑电信号采集设备102用于采集所述驾驶者的EEG信号。

疲劳状态判断模块103用于根据所述EEG信号判断所述驾驶者的疲劳状态。

当人脑受到一个固定频率的视觉刺激的时候,大脑视觉皮层会产生一个连续的与刺激频率有关(刺激频率的基频或倍频处)的响应,该响应可以通过脑电信号采集设备102采集的EEG信号中的SSVEP(稳态视觉诱发电位,Steady-State Visual EvokedPotentials)信号体现出来。相比于其它常用的脑电范式,比如自发脑电信号,SSVEP信号具有相对较高的信噪比,易于检测,从而便于疲劳状态判断模块103根据EEG信号判断所述驾驶者的疲劳状态。

4a2cf6cf7aa75307df8ea6b60d7a3411.png

图2

如图2所示,AR设备101中可以包括:摄像头201、路况信息处理模块202,以及光源显示模块203和光学投影模块204。

其中,摄像头201用于拍摄路况视频图像;

路况信息处理模块202用于从摄像头201拍摄的路况视频图像中识别出障碍物后,根据识别的障碍物在所述图像中的位置,通过所述光源显示模块203和光学投影模块204在汽车的前挡风玻璃相应位置处以设定频率闪烁显示所述障碍物的标记。

更优地,AR设备101在将从路况视频图像中识别出的障碍物,以设定频率闪烁显示于汽车的前挡风玻璃时,还可以加入场景标记功能,例如,依次为从路况视频图像中识别出的各个建筑物编号数字1、2、3...,并针对从路况视频图像中识别出的每个建筑物,在前挡风玻璃上投影显示该建筑物时,还显示该建筑物的数字标记。

以显示数字的方式激励、诱发脑电信号,这样即使脑电信号采集设备102在记录脑电信号受到一定的环境干扰,疲劳状态判断模块103也可以利用matlab软件通过数字的标识进行分类处理,从而在根据所述EEG信号判断所述驾驶者的疲劳状态时,具有更强的抗干扰能力,得到更准确的判断结果。

更优地,为了保证足够快的信息传输速度,可以进行通道优化,即只采集少量的数据来实现脑网络的评估,研究表明,大脑枕部区域是SSVEP信号幅值最高的区域,因此,脑电信号采集设备102仅采集所述驾驶者的枕部的SSVEP信号输出至疲劳状态判断模块103进行定性的分析,可以大大减少采集的数据量,提高采集速率。

具体地,上述的脑电信号采集设备102可以包括:电极帽和信号采集板。

其中,电极帽佩戴于所述驾驶者头上,用于通过电极探测所述驾驶者头部若干处的脑电波信号;较佳地,电极帽用于通过电极探测所述驾驶者枕部的脑电波信号。

信号采集板与所述电极帽相连,信号采集板上设置有信号放大器;

信号采集板用于将所述电极帽探测的脑电信号进行放大处理后输出至所述疲劳状态判断模块103。

更优地,电极帽还可汲取导电膏并向各个电极注射适量导电膏。

上述的电极帽根据“10-20国际标准导联”方法制造,电极帽上所有脑电信号采集通道的位置和名称都按照标准制定。将标准电极帽与信号采集板中的信号放大器连接起来进行脑电信号的采集;电极帽还可向各个电极注射适量导电膏,从参考电极和GND电极开始直至其它电极,使导电膏与大脑皮层或皮肤接触。

具体地,上述疲劳状态判断模块103可以通过所述EEG信号构建脑网络,进而计算所述脑网络的小世界特性;在计算的小世界特性小于疲劳评估阈值时,判断所述驾驶者处于疲劳状态。

【解读】

本发明公开了一种基于AR技术的疲劳驾驶检测系统通过AR设备从路况视频图像中识别出障碍物,以设定频率闪烁显示于汽车的前挡风玻璃相应位置处,作为驾驶者的诱发脑电信号的激励信号;进而根据采集的所述驾驶者的EEG信号判断疲劳状态将AR中的场景作为脑电信号激励目标相比于传统的人脑控制系统,AR能为用户提供更积极主动、更丰富多彩、更具激励性的情境反馈(与大脑思维信息输出密切关联)模式。

【总结】

京东方的技术方案,通过巧妙地利用汽车中所应用的AR技术所显示的内容来作为驾驶者的诱发脑电信号的激励信号,利用诱发脑电信号易于检测的特点直接判断驾驶者的疲劳状态,一方面不再需要采集其它物理量,比如驾驶者操纵方向盘的旋转角度用于辅助判断驾驶者的疲劳状态;另一方面,也不需要针对不同的驾驶者个体来训练适用于驾驶者个体的疲劳驾驶状态评估模型;从而大大提高了检测方案的可行性。

提供全球最新技术参考,启迪创新思路!乘法君一直在努力,想了解更多国外最新专利技术,请保持关注,非常感谢!

更多干货文章请关注微信公众号“RideIP玩转知识产权”(ID:RideIP0606)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值