用python构建数学模型_用Python给文本创立向量空间模型的教程

这篇文章主要介绍了用Python给文本创立向量空间模型的教程,比如文中举例将文本中的词频转为量化的矩阵,需要的朋友可以参考下

我们需要开始思考如何将文本集合转化为可量化的东西。最简单的方法是考虑词频。

我将尽量尝试不使用NLTK和Scikits-Learn包。我们首先使用Python讲解一些基本概念。

基本词频

首先,我们回顾一下如何得到每篇文档中的词的个数:一个词频向量。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

mydoclist =

['Julie loves me more than Linda loves

me',

'Jane likes me more than Julie loves

me',

'He likes basketball more than

baseball']

#mydoclist = ['sun sky bright', 'sun sun

bright']

from collections import

Counter

for doc in

mydoclist:

tf

= Counter()

for

word in doc.split():

tf[word]

+=1

print

tf.items() #tf 为一个字典,items()转换为元组

[('me',

2), ('Julie',

1), ('loves',

2), ('Linda',

1), ('than',

1), ('more',

1)]

[('me',

2), ('Julie',

1), ('likes',

1), ('loves',

1), ('Jane',

1), ('than',

1), ('more',

1)]

[('basketball',

1),

('baseball',

1), ('likes',

1), ('He',

1), ('than',

1), ('more',

1)]

这里我们引入了一个新的Python对象,被称作为Counter。该对象只在Python2.7及更高的版本中有效。Counters非常的灵活,利用它们你可以完成这样的功能:在一个循环中进行计数。

根据每篇文档中词的个数,我们进行了文档量化的第一个尝试。但对于那些已经学过向量空间模型中“向量”概念的人来说,第一次尝试量化的结果不能进行比较。这是因为它们不在同一词汇空间中。

我们真正想要的是,每一篇文件的量化结果都有相同的长度,而这里的长度是由我们语料库的词汇总量决定的。

这里我们引入了一个新的Python对象,被称作为Counter。该对象只在Python2.7及更高的版本中有效。Counters非常的灵活,利用它们你可以完成这样的功能:在一个循环中进行计数。

根据每篇文档中词的个数,我们进行了文档量化的第一个尝试。但对于那些已经学过向量空间模型中“向量”概念的人来说,第一次尝试量化的结果不能进行比较。这是因为它们不在同一词汇空间中。

我们真正想要的是,每一篇文件的量化结果都有相同的长度,而这里的长度是由我们语料库的词汇总量决定的。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

import string #allows for

format()

def build_lexicon(corpus):

lexicon

= set()

for

doc in corpus:

lexicon.update([word

for word in

doc.split()])

return

lexicon

def tf(term, document):

return

freq(term, document)

def freq(term, document):

return

document.split().count(term)

vocabulary =

build_lexicon(mydoclist)

doc_term_matrix =

[]

print 'Our vocabulary vector is ['

+ ',

'.join(list(vocabulary))

+ ']'

for doc in

mydoclist:

print

'The doc is "' + doc

+ '"'

tf_vector

= [tf(word, doc) for

word in vocabulary]

tf_vector_string

= ',

'.join(format(freq,

'd') for freq

in tf_vector)

print

'The tf vector for Document %d is [%s]' %

((mydoclist.index(doc)+1),

tf_vector_string)

doc_term_matrix.append(tf_vector)

#

here's a test: why did I wrap mydoclist.index(doc)+1 in parens? it

returns an int...

# try

it! type(mydoclist.index(doc) + 1)

print 'All combined, here is our master

document term matrix: '

print doc_term_matrix

我们的词向量为[me, basketball, Julie, baseball, likes, loves, Jane,

Linda, He, than, more]

文档”Julie loves me more than Linda loves me”的词频向量为:[2, 0, 1, 0,

0, 2, 0, 1, 0, 1, 1]

文档”Jane likes me more than Julie loves me”的词频向量为:[2, 0, 1, 0, 1,

1, 1, 0, 0, 1, 1]

文档”He likes basketball more than baseball”的词频向量为:[0, 1, 0, 1, 1,

0, 0, 0, 1, 1, 1]

合在一起,就是我们主文档的词矩阵:

[[2, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1], [2, 0, 1, 0, 1, 1, 1, 0, 0,

1, 1], [0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1]]

好吧,这看起来似乎很合理。如果你有任何机器学习的经验,你刚刚看到的是建立一个特征空间。现在每篇文档都在相同的特征空间中,这意味着我们可以在同样维数的空间中表示整个语料库,而不会丢失太多信息。

标准化向量,使其L2范数为1

一旦你在同一个特征空间中得到了数据,你就可以开始应用一些机器学习方法:分类、聚类等等。但实际上,我们同样遇到一些问题。单词并不都包含相同的信息。

如果有些单词在一个单一的文件中过于频繁地出现,它们将扰乱我们的分析。我们想要对每一个词频向量进行比例缩放,使其变得更具有代表性。换句话说,我们需要进行向量标准化。

我们真的没有时间过多地讨论关于这方面的数学知识。现在仅仅接受这样一个事实:我们需要确保每个向量的L2范数等于1。这里有一些代码,展示这是如何实现的。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

import math

def l2_normalizer(vec):

denom

=

np.sum([el**2

for el in

vec])

return

[(el / math.sqrt(denom))

for el in

vec]

doc_term_matrix_l2 =

[]

for vec in

doc_term_matrix:

doc_term_matrix_l2.append(l2_normalizer(vec))

print 'A regular old document term matrix:

'

print

np.matrix(doc_term_matrix)

print '\nA document term matrix with

row-wise L2 norms of 1:'

print

np.matrix(doc_term_matrix_l2)

# if you want to check this math, perform the

following:

# from numpy import linalg as la

# la.norm(doc_term_matrix[0])

# la.norm(doc_term_matrix_l2[0])

格式化后的旧的文档词矩阵:

1

2

3

[[2 0 1

0 0 2 0

1 0 1

1]

[2 0 1

0 1 1 1

0 0 1

1]

[0 1 0

1 1 0 0

0 1 1

1]]

按行计算的L2范数为1的文档词矩阵:

1

2

3

4

5

6

[[ 0.57735027 0.

0.28867513 0. 0.

0.57735027

0. 0.28867513 0.

0.28867513 0.28867513]

[ 0.63245553 0.

0.31622777 0. 0.31622777

0.31622777

0.31622777 0. 0.

0.31622777 0.31622777]

[ 0. 0.40824829

0. 0.40824829 0.40824829

0. 0.

0. 0.40824829

0.40824829

0.40824829]]

还不错,没有太深究线性代数的知识,你就可以马上看到我们按比例缩小了各个向量,使它们的每一个元素都在0到1之间,并且不会丢失太多有价值的信息。你看到了,一个计数为1的词在一个向量中的值和其在另一个向量中的值不再相同。

为什么我们关心这种标准化吗?考虑这种情况,如果你想让一个文档看起来比它实际上和一个特定主题更相关,你可能会通过不断重复同一个词,来增加它包含到一个主题的可能性。坦率地说,在某种程度上,我们得到了一个在该词的信息价值上衰减的结果。所以我们需要按比例缩小那些在一篇文档中频繁出现的单词的值。

IDF频率加权

我们现在还没有得到想要的结果。就像一篇文档中的所有单词不具有相同的价值一样,也不是全部文档中的所有单词都有价值。我们尝试利用反文档词频(IDF)调整每一个单词权重。我们看看这包含了些什么:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

def numDocsContaining(word,

doclist):

doccount

= 0

for

doc in doclist:

if

freq(word, doc) >

0:

doccount

+=1

return

doccount

def idf(word, doclist):

n_samples

= len(doclist)

df

= numDocsContaining(word, doclist)

return

np.log(n_samples /

1+df)

my_idf_vector = [idf(word,

mydoclist) for word

in vocabulary]

print 'Our vocabulary vector is ['

+ ',

'.join(list(vocabulary))

+ ']'

print 'The inverse document frequency

vector is [' + ',

'.join(format(freq,

'f') for freq

in my_idf_vector) +

']'

我们的词向量为[me, basketball, Julie, baseball, likes, loves, Jane,

Linda, He, than, more]

反文档词频向量为[1.609438, 1.386294, 1.609438, 1.386294, 1.609438,

1.609438, 1.386294, 1.386294, 1.386294, 1.791759, 1.791759]

现在,对于词汇中的每一个词,我们都有一个常规意义上的信息值,用于解释他们在整个语料库中的相对频率。回想一下,这个信息值是一个“逆”!即信息值越小的词,它在语料库中出现的越频繁。

我们快得到想要的结果了。为了得到TF-IDF加权词向量,你必须做一个简单的计算:tf * idf。

现在让我们退一步想想。回想下线性代数:如果你用一个AxB的向量乘以另一个AxB的向量,你将得到一个大小为AxA的向量,或者一个标量。我们不会那么做,因为我们想要的是一个具有相同维度(1

x词数量)的词向量,向量中的每个元素都已经被自己的idf权重加权了。我们如何在Python中实现这样的计算呢?

在这里我们可以编写完整的函数,但我们不那么做,我们将要对numpy做一个简介。

1

2

3

4

5

6

7

8

9

10

import numpy as np

def

build_idf_matrix(idf_vector):

idf_mat

=

np.zeros((len(idf_vector),

len(idf_vector)))

np.fill_diagonal(idf_mat,

idf_vector)

return

idf_mat

my_idf_matrix =

build_idf_matrix(my_idf_vector)

#print my_idf_matrix

太棒了!现在我们已经将IDF向量转化为BxB的矩阵了,矩阵的对角线就是IDF向量。这意味着我们现在可以用反文档词频矩阵乘以每一个词频向量了。接着,为了确保我们也考虑那些过于频繁地出现在文档中的词,我们将对每篇文档的向量进行标准化,使其L2范数等于1。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

doc_term_matrix_tfidf =

[]

#performing tf-idf matrix multiplication

for tf_vector in

doc_term_matrix:

doc_term_matrix_tfidf.append(np.dot(tf_vector,

my_idf_matrix))

#normalizing

doc_term_matrix_tfidf_l2 =

[]

for tf_vector in

doc_term_matrix_tfidf:

doc_term_matrix_tfidf_l2.append(l2_normalizer(tf_vector))

print vocabulary

print

np.matrix(doc_term_matrix_tfidf_l2) #

np.matrix() just to make it easier to look at

set(['me',

'basketball',

'Julie',

'baseball',

'likes',

'loves',

'Jane',

'Linda', 'He',

'than',

'more'])

[[ 0.57211257 0.

0.28605628 0. 0.

0.57211257

0. 0.24639547 0.

0.31846153 0.31846153]

[ 0.62558902 0.

0.31279451 0. 0.31279451

0.31279451

0.26942653 0. 0.

0.34822873 0.34822873]

[ 0. 0.36063612

0. 0.36063612 0.41868557

0. 0.

0. 0.36063612

0.46611542

0.46611542]]

太棒了!你刚看到了一个展示如何繁琐地建立一个TF-IDF加权的文档词矩阵的例子。

最好的部分来了:你甚至不需要手动计算上述变量,使用scikit-learn即可。

记住,Python中的一切都是一个对象,对象本身占用内存,同时对象执行操作占用时间。使用scikit-learn包,以确保你不必担心前面所有步骤的效率问题。

注意:你从TfidfVectorizer/TfidfTransformer得到的值将和我们手动计算的值不同。这是因为scikit-learn使用一个Tfidf的改进版本处理除零的错误。这里有一个更深入的讨论。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

from sklearn.feature_extraction.text

import CountVectorizer

count_vectorizer =

CountVectorizer(min_df=1)

term_freq_matrix =

count_vectorizer.fit_transform(mydoclist)

print "Vocabulary:",

count_vectorizer.vocabulary_

from sklearn.feature_extraction.text

import TfidfTransformer

tfidf =

TfidfTransformer(norm="l2")

tfidf.fit(term_freq_matrix)

tf_idf_matrix =

tfidf.transform(term_freq_matrix)

print tf_idf_matrix.todense()

Vocabulary: {u'me':

8,

u'basketball':

1, u'julie':

4, u'baseball':

0, u'likes':

5, u'loves':

7, u'jane':

3, u'linda':

6, u'more':

9, u'than':

10, u'he':

2}

[[ 0. 0.

0. 0. 0.28945906

0.

0.38060387 0.57891811

0.57891811 0.22479078

0.22479078]

[ 0. 0. 0.

0.41715759 0.3172591

0.3172591

0. 0.3172591 0.6345182

0.24637999 0.24637999]

[ 0.48359121 0.48359121

0.48359121 0. 0.

0.36778358

0. 0. 0.

0.28561676

0.28561676]]

实际上,你可以用一个函数完成所有的步骤:TfidfVectorizer

1

2

3

4

5

6

from sklearn.feature_extraction.text

import TfidfVectorizer

tfidf_vectorizer =

TfidfVectorizer(min_df =

1)

tfidf_matrix =

tfidf_vectorizer.fit_transform(mydoclist)

print tfidf_matrix.todense()

1

2

3

4

5

6

[[ 0. 0.

0. 0. 0.28945906

0.

0.38060387 0.57891811

0.57891811 0.22479078

0.22479078]

[ 0. 0. 0.

0.41715759 0.3172591

0.3172591

0. 0.3172591 0.6345182

0.24637999 0.24637999]

[ 0.48359121 0.48359121

0.48359121 0. 0.

0.36778358

0. 0. 0.

0.28561676

0.28561676]]

并且我们可以利用这个词汇空间处理新的观测文档,就像这样:

1

2

3

4

new_docs = ['He

watches basketball and baseball', 'Julie

likes to play basketball', 'Jane loves to

play baseball']

new_term_freq_matrix =

tfidf_vectorizer.transform(new_docs)

print

tfidf_vectorizer.vocabulary_

print

new_term_freq_matrix.todense()

1

2

3

4

5

6

7

{u'me':

8,

u'basketball':

1, u'julie':

4, u'baseball':

0, u'likes':

5, u'loves':

7, u'jane':

3, u'linda':

6, u'more':

9, u'than':

10, u'he':

2}

[[ 0.57735027

0.57735027 0.57735027 0.

0. 0. 0.

0. 0. 0.

0. ]

[ 0. 0.68091856

0. 0. 0.51785612

0.51785612

0. 0. 0.

0. 0. ]

[ 0.62276601 0.

0. 0.62276601 0.

0. 0.

0.4736296 0. 0.

0. ]]

请注意,在new_term_freq_matrix中并没有“watches”这样的单词。这是因为我们用于训练的文档是mydoclist中的文档,这个词并不会出现在那个语料库的词汇中。换句话说,它在我们的词汇词典之外。

回到Amazon评论文本

练习2

现在是时候尝试使用你学过的东西了。利用TfidfVectorizer,你可以在Amazon评论文本的字符串列表上尝试建立一个TF-IDF加权文档词矩。

1

2

3

4

5

6

7

8

9

10

import os

import csv

#os.chdir('/Users/rweiss/Dropbox/presentations/IRiSS2013/text1/fileformats/')

with

open('amazon/sociology_2010.csv',

'rb') as csvfile:

amazon_reader

= csv.DictReader(csvfile,

delimiter=',')

amazon_reviews

=

[row['review_text']

for row in

amazon_reader]

#your

code here!!!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值