1 数据探索
对数据进行一个整体的理解
1.1 查看数据都有一些什么特征
importpandas as pdimportseaborn as sns%matplotlib inline
titanic= pd.read_csv(‘G:\\titanic\\train.csv‘)titanic.sample(10)
获取数据的10行记录进行观察,初步了解数据的组成,可以看到Age、Cabin里面是存在缺失值的,在进一步理解数据的统计量后再进行数据处理,观察各特征的最大最小值等,可以发现这些数据比较合理,不存在特别的异常值。
print(titanic.describe())
#查看常用的统计量
2 数据分析\处理
Name和Ticket依据基本认知来看,与乘客是否有机会存活相关不大,因此暂时不理会这两个特征。由于Cabin这一个特征缺失值比较多,参考价值低,因此同样暂时搁置。
2.1 Sex特征处理
Sex分为female和male,但是一些算法模型只能识别数字,所以将他们分别用0和1表示
titanic.Sex = titanic.Sex.replace("male",1)
titanic.Sex= titanic.Sex.replace("female",0)
2.2 Age特征处理
Age这里存在缺失值,有年纪记录的有714行,这里使用age的平均数来进行填充缺失值
titanic