泰坦尼克号预测python_泰坦尼克号生存预测(python)

该博客介绍了使用Python对泰坦尼克号数据集进行生存预测的过程,包括数据探索、特征处理(如填充缺失值、转换类别特征)以及使用逻辑回归、K近邻、决策树、随机森林和GBDT等模型进行预测,并通过交叉验证评估模型性能,最终发现GBDT模型在预测准确性上表现出色。
摘要由CSDN通过智能技术生成

1 数据探索

对数据进行一个整体的理解

1.1 查看数据都有一些什么特征

importpandas as pdimportseaborn as sns%matplotlib inline

titanic= pd.read_csv(‘G:\\titanic\\train.csv‘)titanic.sample(10)

获取数据的10行记录进行观察,初步了解数据的组成,可以看到Age、Cabin里面是存在缺失值的,在进一步理解数据的统计量后再进行数据处理,观察各特征的最大最小值等,可以发现这些数据比较合理,不存在特别的异常值。

print(titanic.describe())

#查看常用的统计量

2 数据分析\处理

Name和Ticket依据基本认知来看,与乘客是否有机会存活相关不大,因此暂时不理会这两个特征。由于Cabin这一个特征缺失值比较多,参考价值低,因此同样暂时搁置。

2.1 Sex特征处理

Sex分为female和male,但是一些算法模型只能识别数字,所以将他们分别用0和1表示

titanic.Sex = titanic.Sex.replace("male",1)

titanic.Sex= titanic.Sex.replace("female",0)

2.2 Age特征处理

Age这里存在缺失值,有年纪记录的有714行,这里使用age的平均数来进行填充缺失值

titanic

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值