pca主成分分析结果解释_主成分分析(PCA)的详细解释

主成分分析(PCA)是一种降维方法,通过转换变量来保留数据集中的大部分信息。它包括标准化数据、计算协方差矩阵、求解特征向量和特征值,以及沿主成分轴重构数据。PCA有助于简化数据集,便于探索、可视化和机器学习分析。
摘要由CSDN通过智能技术生成

26027ce5a6e5fae50bbe72bfe0ba3d54.png
原作者:Zakaria Jaadi
翻译:钟胜杰

这篇文章的目的是提供主成分分析的完整同时比较简化的解释,特别是逐步回答它是如何工作的,这样每个人都可以理解它并利用它,而不必具有很高的数学水平。

PCA实际上是一种使用很广的网络方法,但只有少数人直截了当地解释它是如何工作的,而不会过多地投入技术性的解释。这就是为什么我决定自己发布帖子,用简化的方式呈现它的原因。

在开始解释之前,文章说明了PCA在每个步骤中做了什么,并简化了它背后的数学概念,如标准化,协方差,特征向量和特征值,而没有关注如何计算它们。

所以什么是主成分分析呢?

主成分分析(PCA)是一种降维方法,通常用于通过将数量很多的变量转换为仍包含集合中大部分信息的较少变量来降低数据集的维数。

减少数据集的变量数量自然是以牺牲精度为代价的,但降维是为了简单而略微准确。因为较小的数据集更易于探索和可视化,并且使机器学习算法更容易和更快地分析数据,而无需处理无关的变量。

总而言之,PCA的概念很简单:减少数据集的维数,同时保留尽可能多的信息。

逐步解释PCA

第一步:标准化

此步骤的目的是标准化输入数据集,使数据成比例缩小。

更确切地说,在使用PCA之前必须标准化数据的原因是PCA方法对初始变量的方差非常敏感。也就是说,如果初始变量的范围之间存在较大差异,那么范围较大的变量占的比重较大,和较小的变量相比(例如,范围介于0和100之间的变量较0到1之间的变量会占较大比重),这将导致主成分的偏差。通过将数据转换为同样的比例可以防止这个问题。

在数学上,可以通过减去平均值并除以每个变量的标准偏差来完成。

c3e85eb7feb2ef8613acebf6ca6fb3be.png
标准化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值