tensorboardx安装_PyTorch 34.TensorboardX

f479a2ca10ddf2054a48346dcff02406.png

转自:

Xavier CHEN:PyTorch使用tensorboardX​zhuanlan.zhihu.com
112081381057491a9f8dc444d18bdf40.png

之前用pytorch是手动记录数据做图,总是觉得有点麻烦。学习了一下tensorboardX,感觉网上资料有点杂,记录一下重点。由于大多数情况只是看一下loss,lr,accu这些曲线,就先总结这些,什么images,audios以后需要再总结。


1.安装:有各种方法,docker安装,使用logger.py脚本调用感觉都不简洁。现在的tensorboardX感觉已经很好了,没什么坑。在命令行pip安装即可

!注意! 这玩意虽然在pytorch下,但是其实是内核是 tensorflow里面的board,所以安装之前得先安装 tensorflow

pip install tensorboardX


2.调用

from tensorboardX import SummaryWriterwriter = SummaryWriter('log')

writer就相当于一个日志,保存你要做图的所有信息。第二句就是在你的项目目录下建立一个文件夹log,存放画图用的文件。刚开始的时候是空的。

训练的循环中,每次写入 图像名称,loss数值, n_iteration

writer.add_scalar('Train/Loss', loss.data[0], niter)

验证的循环中,写入预测的准确度即可:

writer.add_scalar('Test/Accu', correct/total, niter)

为了看得清楚一点,我把整个train_eval写一起了

def train_eval(epoch):running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = datainputs, labels = Variable(inputs), Variable(labels)optimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.data[0]#每2000个batch显示一次当前的loss和accuif i % 2000 == 1999:print('[epoch: %d, batch: %5d] loss: %.3f' %(epoch + 1, i+1, running_loss / 2000))running_loss = 0.0print('[epoch: %d, batch: %5d] Accu: %.3f' %(epoch + 1, i+1, correct/total))#每10个batch画个点用于loss曲线if i % 10 == 0:niter = epoch * len(trainloader) + iwriter.add_scalar('Train/Loss', loss.data[0], niter)#每500个batch全验证集检测,画个点用于Accuif i % 500 == 0:correct = 0total = 0for data in testloader:images, target = datares = net(Variable(images))_, predicted = torch.max(res.data, 1)total += labels.size(0)correct += (predicted == target).sum()writer.add_scalar('Test/Accu', correct/total, niter)


3.显示

会发现刚刚的log文件夹里面有文件了。在命令行输入如下,载入刚刚做图的文件(那个./log要写完整的路径)

tensorboard --logdir=./log

在浏览器输入:

http://0.0.0.0:6006/

就可以看到我们做的两个图了

87357de2b8008a22278508b53daa479a.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值