python调用cplex求解装箱问题_Python调用CPLEX解决计划问题(2),python,cplex,规划,二...

本文介绍如何使用Python的Docplex库,结合Excel数据,解决装箱问题。相较于直接调用CPLEX求解器,Docplex提供了更简洁的建模语法。程序包括主程序和读取Excel表格的部分,展示如何定义模型、目标函数和约束,最终求解问题。
摘要由CSDN通过智能技术生成

python调用cplex解决规划问题(二)

上篇文章直接使用python调用cplex求解器解决旅行商问题(TSP)。但是只能是固定节点和距离的计算。所以这次小小的优化了一下,使用更贴近建模语言的docplex语法包进行改进,然后通过读取excel表格来获取数据。不得不说使用docplex真的比直接那个cplex求解器要好的多啦!程序要简单好多,对我这个菜鸡很友好。程序很简陋,大家多多包涵,欢迎批评指正,和友好交流。

废话不多说直接上代码喽!

下面是主程序:

from docplex.mp.model import Model

from excel_to_matrix import excel_to_matrix

datafile = 'C:\\Users\\Administrator\\Desktop\\matrix.xlsx'

distance = excel_to_matrix(datafile)

n = len(distance)

# 首先将地点标识建立起来,从1建立到n

L = [i for i in range(1, n + 1)]

# 建立起下标的集合

xb = {(i, j) for i in L for j in L}

# 定义模型类型

mdl = Model('MIP')

# 定义变量

x = mdl.binary_var_dict(xb, name='x')

u = mdl.continuous_var_dict(L, name='u')

# 定义目标函数

mdl.minimize(mdl.sum(x[i, j] * distance[i - 1, j - 1] for i in L for j in L))

# 定义约束函数

mdl.add_constraints(mdl.sum(x[i, j] for i in L) == 1 for j in L)

mdl.add_constraints(mdl.sum(x[i, j] for j in L) == 1 for i in L)

mdl.add_constraints(u[i] - u[j] + n * x[i, j] <= n - 1 for i in L for j in L if i != j & i > 1 & j > 1)

solution = mdl.solve()

print(solution)

这是读取excel表格的程序:

import numpy as np

import xlrd

def excel_to_matrix(path):

table = xlrd.open_workbook(path).sheets()[0] # 获取第一个sheet表

row = table.nrows # 行数

col = table.ncols # 列数

datamatrix = np.zeros((row, col)) # 生成一个nrows行ncols列,且元素均为0的初始矩阵

for x in range(col):

cols = np.matrix(table.col_values(x)) # 把list转换为矩阵进行矩阵操作

datamatrix[:, x] = cols # 按列把数据存进矩阵中

return datamatrix

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值