matlab rbf函数_RBF神经网络

本文介绍了如何使用Matlab的newrb和newrbe函数创建RBF神经网络,重点在于如何在保持精度的同时,通过设置参数最小化神经元数量。通过实例展示了如何运用这些函数设计精确网络,并提供关键代码片段。
摘要由CSDN通过智能技术生成

RBF神经网络更新算法

09cd7eed1d263d298950c6c92cd930be.png

在确认输入值在高斯基函数的覆盖范围内时,可以不调节c和b。


和RBF神经网络有关的matlab函数

net = newrb(P,T,goal,spread,MN,DF)

P为输入,T为目标输出,goal为目标均方差,spread是径向基函数分布系数,MN是最大神经元数,DF是每次显示之间需要添加的神经元数(默认为25)。根据输入输出,生成一个RBF神经网络

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrb(P,T);

P = 1.5; Y = sim(net,P)
net = newrbe(P,T,spread)

设计精确的径向基网络,P为输入,T为目标输出,spread是径向基函数分布系数

P = [1 2 3]; T = [2.0 4.1 5.9]; net = newrbe(P,T); 
P = 1.5; Y = sim(net,P)

以上两种方法,自动生成神经网络,且神经元的数量最少。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值