gbdt算法_GBDT+LR的推荐算法

GBDT+LR的提出源自于高特征交叉带来的组合爆炸问题。推荐系统中的FM及FFM都是在基本特征的基础之上进一步构造新的特征(特征与特征之间的交叉)。2014年,Facebook提出了基于GBDT+LR组合模型的解决方法。

GBDT+LR的使用场景

GBDT+LR主要运用在CTR点击率预估,即去计算用户点击推送广告的概率。那么为什么要采用这种组合方式呢?因为点击率预估涉及到的样本一般是上亿级别的,样本量庞大,而且又要满足实时性,因此模型不能太过复杂,所以模型主要采用速度比较快的LR。但是LR的特征组合能力有限,因此特征工程就特别的重要。现有的特征工程主要集中在特征的重要性以及特征的组合中,采用人力或者单纯的挑选重要性的特征并不可靠,就如同FFM是在FM的基础上增加了"域"的概念,其计算复杂度就增长了很多。用什么样的方法才能做到尽可能的寻找最佳的特征组合呢。GBDT算法整好可以用来发掘具有区分度的特征以及相应的特征组合,大大的减少了人力成本。

GBDT+LR的结构

顾名思义,该模型分为两部分:GBDT和LR,LR在这里就不细讲,感兴趣的朋友移步各大博客,有详细的推导过程。

GBDT

那么GBDT是如何进行特征选择的。我们先来看一棵cart树,因为它是一颗二叉树,所以每一个节点分出两个枝干。每一个叶节点作为输出。

b7d82cee20e9db28ca50659249072322.png

例如,样本x最终落在了小女孩叶节点上,那么我们可以认为age<15并且No male与最终结果有线性关系。这样我们可以认为每一个叶节点都可以看做一个组合过的特征值,且该特征值与结果有着线性关系(要用LR进行线性组合)。则同样的决策树的深度也决定了特征交叉的阶数。

但是GBDT非常容易产生过拟合。因为决策树本身就是一种细致性分类的模型,它只能基于训练样本产生合适的结果,即,它对训练集是过拟合的,它并不具有泛化能力。

稀疏编码的优势

因为GBDT最后输出的并不是稠密向量,在大量的树和叶子节点中,送入LR中的是高维的稀疏向量。

在工业界,很少将连续值作为特征喂给逻辑回归模型,会更愿意把连续特征离散化为一系列的0,1特征,这样做的优势有

大神指出,特征+模型其实是一个“海量离散特征+简单模型”与“少量连续特征+复杂模型”的权衡

  • 稀疏向量内积乘法运算速度快,计算方便存储
  • 离散化后的特征对异常数据具有很强的鲁棒性
  • 逻辑回归模型属于广义的线性模型,表达能力比较受限,单变量离散化为n个时,相当于为模型引入了非线性,能够提升模型的表达能力
  • 离散化后可以进行特征交叉
  • 模型会更稳定
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值