推荐系统 | 基础推荐模型 | GBDT+LR模型 | Python实现


基础推荐模型——传送门


一、GBDT+LR——特征工程模型化的开端

  FFM 模型采用引入特征域的方式增强了模型的特征交叉能力,但无论如何,FFM 只能做二阶的特征交叉,如果继续提高特征交叉的维度,会不可避免地产生组合爆炸和计算复杂度过高的问题。那么,有没有其他方法可以有效地处理高维特征组合和筛选的问题呢? 2014 年, Facebook 提出了基于 GBDT+ LR组合模型的解决方案。

1.GBDT+LR 组合模型的结构

  Facebook 提出了一种利用 GBDT 自动进行特征筛选和组合,进而生成新的离散特征向量,再把该特征向量当作 LR 模型输入,预估 CTR 的模型。其模型结构如下:
在这里插入图片描述
需要强调的是,用 GBDT 构建特征工程 ,利用 LR 预估 CTR 这两步是独立训练的,所以不存在如何将LR的梯度回传到GBDT 类复杂的问题。

2.GBDT 进行特征转换的过程

  利用训练集训练好 GBDT 模型之后,就可以利用该模型完成从原始特征向量到新的离散型特征向量的转化。具体过程为:一个训练样本在输入 GBDT 的某一子树后,会根据每个节点的规则最终落入某一叶子节点,把该叶子节点置为1 ,其他叶子节点置为0 ,所有叶子节点组成的向量即形成了该棵树的特征向量,把 GBDT 所有子树的特征向量连接起来,即形成了后续 LR 模型输入的离散型特征向量。
  举例来说,如下图所示,GBDT由三棵子树构成,每棵子树有4个叶子节点,输入一个训练样本后,其先后落入"子树1 "的第3个叶节点中,那么特征向量就是[0,0,1,0],“子树 2” 的第1个叶节点,特征向量为 [1,0,0,0] ,"子树 3"的第4个叶节点,特征向量为 [0,0,01] ,最后连接所有特征向量,形成最终的特征向量[0,0,1,0,1,0,0,0,0,0,01]。
在这里插入图片描述
  事实上,决策树的深度决定了特征交叉的阶数。如果决策树的深度为 4,则通过3次节点分裂,最终的叶节点实际上是进行三阶特征组合后的结果,如此强的特征组合能力显然是 FM 系的模型不具备的。但 GBDT 容易产生过拟合,以及GBDT的特征转换方式实际上丢失了大量特征的数值信息,因此不能简单地说GBDT 的特征交叉能力强,效果就比FFM 好,在模型的选择和调试上,永远都是多种因素综合作用的结果。

3.GBDT+LR 组合模型开启特征工程新趋势

  GBDT+LR 组合模型对于推荐系统领域的重要性在于:它大大推进了特征工程模型化这一重要趋势。 GBDT+LR 组合模型出现之前,特征工程的主要解决方法有两个: 一是进行人工的或半人工的特征组合和特征筛选,二是通过改造目标函数,改进模型结构,增加特征交叉项的方式增强特征组合能力。但这两种方法都有弊端,第一种方法对算法工程师的经验和精力投入要求较高;第二种方法
则要求从根本上改变模型结构,对模型设计能力的要求较高。
  GBDT+LR 组合模型的提出,意味着特征工程可以完全交由一个独立的模型来完成,模型的输入可以是原始的特征向量 ,不必在特征工程上投入过多的人筛选和模型设计的精力,实现真正的端到端( End to End) 训练。
  广义上讲,深度学习模型通过各类网络结构 Embedding 层等方法完成特征工程的自动化,都是 GBDT+LR 开启的特征工程模型化这一趋势的延续。

二、GBDT+LR模型在criteo数据集上的实验

1.数据集介绍

  criteo数据集每行对应一个由 Criteo 提供的展示广告。有如下特征:

  • Label:待预测广告,被点击是1,没有被点击是0
  • I1-I13:共有 13 列数值型特征(主要是计数特征)
  • C1-C26:共有 26 列类别型特征

数据集下载地址为:https://www.kaggle.com/c/criteo-display-ad-challenge/data。我这里采用前100k个样本进行实验。

2.Python实现

  FM推荐模型在criteo数据集上的Python实现,分为以下几个步骤:

  • 数据预处理:dataProcess.py
  • 数据加载:dataSet.py
  • 模型搭建:LR_Model.py
  • 主函数:训练及预测-main.py
2.1 数据预处理
#!usr/bin/env python
# -*- coding:utf-8 -*-
"""
@author: liujie
@file: dataProcess.py
@time: 2022/09/05
@desc:
    数据预处理流程:
        1.特征处理
        2.数据分割
"""
import torch
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder, KBinsDiscretizer
from sklearn.model_selection import train_test_split


class DataProcess():
    def __init__(self, file, nrows, sizes, device):
        # 特征列名
        names = ['label', 'I1', 'I2', 'I3', 'I4', 'I5', 'I6', 'I7', 'I8', 'I9', 'I10', 'I11',
                 'I12', 'I13', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9', 'C10', 'C11',
                 'C12', 'C13', 'C14', 'C15', 'C16', 'C17', 'C18', 'C19', 'C20', 'C21', 'C22',
                 'C23', 'C24', 'C25', 'C26']
        self.device = device
        # 读取数据
        self.data_df = pd.read_csv(file, sep="\t", names=names, nrows=nrows)
        self.data = self.feature_process()

    def feature_process(self):
        # 连续特征
        dense_features = ['I' + str(i) for i in range(1, 14)]
        # 离散特征
        sparse_features = ['C' + str(i) for i in range(1, 27)]
        features = dense_features + sparse_features

        # 缺失值填充:连续特征缺失值填充0;离散特征缺失值填充'-1'
        self.data_df[dense_features] = self.data_df[dense_features].fillna(0)
        self.data_df[sparse_features] = self.data_df[sparse_features].fillna(
  • 4
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
GBDT+LRPython实现可以按照以下步骤进行: 1. 数据预处理:对数据进行清洗、缺失值处理、特征选择等操作。 2. 数据加载:使用Python的数据处理库(如pandas)加载数据集。 3. 模型搭建:使用GBDT模型进行特征转换,将原始特征转换为GBDT树的叶子节点输出的实数值。 4. 训练及预测:使用训练数据训练GBDT模型,并将训练得到的特征转换结果作为LR模型的输入进行训练。然后使用测试数据进行预测。 具体的实现步骤可以参考引用\[1\]和引用\[3\]中提到的内容。在训练阶段,需要获取特征数据并拆分成训练数据和测试数据,然后分别训练GBDT分类器和LR模型。在预测阶段,将待预测的特征输入到GBDT模型中,获取叶子节点并进行拼接,然后使用OneHot编码器将拼接结果转换为OneHot向量,最后使用LR模型进行预测。 总的来说,GBDT+LRPython实现包括数据预处理、数据加载、模型搭建、训练及预测等步骤,具体的实现细节可以参考引用\[1\]和引用\[3\]中的内容。 #### 引用[.reference_title] - *1* [推荐系统 | 基础推荐模型 | GBDT+LR模型 | Python实现](https://blog.csdn.net/liujiesxs/article/details/126723249)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Facebook的GBDT+LR模型python代码实现](https://blog.csdn.net/weixin_43290383/article/details/121306368)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幼稚的人呐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值