难度:困难
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。
图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。
示例:
输入: [2,1,5,6,2,3]
输出: 10
来源:力扣(LeetCode)
链接:力扣
首先想到的是一种暴力解法,就是从每个位置往右遍历去寻找答案,最后是超时无法通过
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int ans = 0;
for(int i = 0;i<heights.size();i++){
int minHei = heights[i];
for(int j = i;j<heights.size();j++){
minHei = min(minHei,heights[j]);
ans = max(ans,minHei * (j-i+1));
}
}
return ans;
}
};
再改进一步,以每个数为基准,向左向右找到第一个比它小的数,依然是超时无法通过
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int ans = 0;
for(int i = 0;i<heights.size();i++){
int left = i;
int right = i;
while(left>=0){
if(heights[left] < heights[i])
break;
left--;
}
while(right < heights.size()){
if(heights[right] < heights[i])
break;
right++;
}
ans = max(ans,heights[i] * (right - left-1));
}
return ans;
}
};
单调栈
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
vector<int> st;
heights.insert(heights.begin(),0);
heights.push_back(0);
int ans = 0;
for(int i = 0;i < heights.size();i++){
while(!st.empty() && heights[st.back()] > heights[i]){
int cur = st.back();
st.pop_back();
ans = max(ans, heights[cur] *(i-1 - st.back() - 1 + 1));
}
st.push_back(i);
}
return ans;
}
};
在数组的最开始插入0,这可以保证对于原数组中的值进去栈时,栈中都有数据。
在求max时,首先i左边的数肯定是不小于当前cur的数,那么cur左边第一个小于cur的数是多少呢?就是cur在单调栈中前一个数位置的后面一位。