hopfileld神经网络_一种基于Hopfield神经网络二维FIR陷波滤波器的设计方法与流程...

本发明提供了一种基于Hopfield神经网络的二维FIR陷波滤波器设计方法,通过将最小均方误差转化为李雅普诺夫能量函数,减少运算复杂度,实现对特定频率干扰的良好滤除效果,适用于数字信号处理领域,如医学图像、卫星图像等。
摘要由CSDN通过智能技术生成

本发明属于数字信号处理技术领域,提供了一种基于Hopfield神经网络的稀疏二维FIR(有限脉冲响应)陷波滤波器的设计方法。

背景技术:

随着计算机技术在存储容量和速度方面的快速发展,二维数字滤波器广泛应用于医学图像处理、卫星图像处理、视频压缩、雷达和声纳信号处理等很多方面。二维数字滤波器分为有限长单位脉冲响应(FIR)数字滤波器和无限长单位脉冲响应(IIR)数字滤波两大类。FIR数字滤波器由于具有内秉稳定性、容易设计成线性相位等显著特点得到了更多的研究。陷波滤波器是一种通带极窄的带通滤波器,其阻带在理想情况下只有一个频率点。这种滤波器主要用于消除某个特定频率的干扰。二维FIR陷波滤波器可以消除二维信号中具有特定频率的干扰,因此得到广泛关注。

目前首次将Hopfileld神经网络应用到二维FIR陷波滤波器的设计,通过将最小均方误差函数转化为李雅普诺夫能量函数并将陷波条件加入能量函数,能量函数的最小值即为误差函数的最小值,此时神经网络的输出值即为所设计的二维FIR陷波滤波器的系数。

技术实现要素:

本发明目的是设计实现减少运算的复杂程度,能很好的滤除具有特定频率的噪声干扰,得到稀疏二维FIR陷波滤波器,并提供一种全新的设计方法——可设计基于Hopfield神经网络的稀疏二维FIR(有限脉冲响应)陷波滤波器的方法。

本发明提供的基于Hopfield神经网络二维FIR陷波滤波器的设计方法具体步骤如下:

第1,将二维FIR陷波滤波器的参数与Hopfield神经网络中的参数一一对应,将滤波器的频域采样矩阵和理想幅度响应与神经网络的权重矩阵和偏重矩阵建立对应关系;

第2,在每次计算过程中,利用OMP算法计算出系数矩阵中的稀疏点位置集合;

第3,利用Hopfield神经网络来对非稀疏位置的系数进行优化;

(以下面I类二维FIR陷波滤波器为例)

(一)理想的四象限对称的二维FIR陷波滤波器的频率响应如下:

其中Ωnotch,Ω0和Ω1分别定义为

Ω1=[-π,π]×[-π,π]-Ω0 (4)

其中,是给定的陷波频率点,BW1和BW2分别表示在频率ω1和ω2方向上阻带的带宽,根据附录1中,在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值