1.前言
最近在学习python词库的可视化,其中有一个依据共现矩阵制作的可视化,感觉十分炫酷,便以此复刻。
在这里插入图片描述
2.项目背景
本人利用爬虫获取各大博客网站的文章,在进行jieba分词,得到每篇文章的关键词,对这些关键词进行共现矩阵的可视化。
3.什么是共现矩阵
比如我们有两句话:
ls = ['我永远喜欢三上悠亚', '三上悠亚又出新作了']
在jieba分词下我们可以得到如下效果:
在这里插入图片描述
我们就可以构建一个以关键词的共现矩阵:
['', '我', '永远', '喜欢', '三上', '悠亚', '又', '出', '新作', '了']
['我', 0, 1, 1, 1, 1, 0, 0, 0, 0]
['永远', 1, 0, 1, 1, 1, 0, 0, 0, 0]
['喜欢' 1, 1, 0, 1, 1, 0, 0, 0, 0]
['三上', 1, 1, 1, 0, 1, 1, 1, 1, 1]
['悠亚', 1, 1, 1, 1, 0, 1, 1, 1, 1]
['又', 0, 0, 0, 1, 1, 0, 1, 1, 1]
['出', 0, 0, 0, 1, 1, 1, 0, 1, 1]
['新作', 0, 0, 0, 1, 1, 1, 1, 0, 1]
['了', 0, 0, 0, 1, 1, 1, 1, 1, 0]]
解释一下,“我永远喜欢三上悠亚”,这一句话中,“我”和“永远”共同出现了一次,在共现矩阵对应的[ i ] [ j ]和[ j ][ i ]上+1,并依次类推。
基于这个原因,我们可以发现,共现矩阵的特点是:
共现矩阵的[0][0]为空。
共现矩阵的第一行第一列是关键词。
对角线全为0。
共现矩阵其实是一个对称矩阵。
当然,在实际的操作中,这些关键词是需要经过清洗的,这样的可视化才干净。
4.共现矩阵的构建思路
每篇文章关键词的二维数组formated_data。
所有关键词的集合set_word。
建立关键词长度+1的矩阵matrix。
赋值矩阵的第一行与第一列为关键词。
设置矩阵对角线为0。
遍历formated_data,让取出的行关键词和取出的列关键词进行组合,共现则+1。
5.共现矩阵的代码实现
# coding:utf-8
import numpy as np
import pandas as pd
import jieba.analyse
import os
# 获取关键词
def Get_file_keywords(dir):
try:
formated_data = [] # 每篇文章关键词的二维数组
set_key_list = [] # 所有关键词的列表
fo = open('dic.txt', 'r', encoding='UTF-8')
keywords = fo.read()
for home, dirs, files in os.walk(dir):
for filename in files:
fullname = os.path.join(home, filename)
f = open(fullname, 'r', encoding='UTF-8')
sentence = f.read()
words = " ".join(jieba.analyse.extract_tags(sentence=sentence, topK=30, withWeight=False, allowPOS=('n'))) # TF-IDF分词
words = words.split(' ')
formated_data.append(words)
for word in words:
if word in keywords:
set_key_list.append(word)
else:
words.remove(word)
set_word = list(set(set_key_list)) # 所有关键词的集合
return formated_data, set_word
except Exception as reason:
print('出现错误:', reason)
# 初始化矩阵
def build_matirx(set_word):
edge = len(set_word) + 1 # 建立矩阵,矩阵的高度和宽度为关键词集合的长度+1
'''matrix = np.zeros((edge, edge), dtype=str)''' # 另一种初始化方法
matrix = [['' for j in range(edge)] for i in range(edge)] # 初始化矩阵
matrix[0][1:] = np.array(set_word)
matrix = list(map(list, zip(*matrix)))
matrix[0][1:] = np.array(set_word) # 赋值矩阵的第一行与第一列
return matrix
# 计算各个关键词的共现次数
def count_matrix(matrix, formated_data):
for row in range(1, len(matrix)):
# 遍历矩阵第一行,跳过下标为0的元素
for col in range(1, len(matrix)):
# 遍历矩阵第一列,跳过下标为0的元素
# 实际上就是为了跳过matrix中下标为[0][0]的元素,因为[0][0]为空,不为关键词
if matrix[0][row] == matrix[col][0]:
# 如果取出的行关键词和取出的列关键词相同,则其对应的共现次数为0,即矩阵对角线为0
matrix[col][row] = str(0)
else:
counter = 0 # 初始化计数器
for ech in formated_data:
# 遍历格式化后的原始数据,让取出的行关键词和取出的列关键词进行组合,
# 再放到每条原始数据中查询
if matrix[0][row] in ech and matrix[col][0] in ech:
counter += 1
else:
continue
matrix[col][row] = str(counter)
return matrix
def main():
formated_data, set_word = Get_file_keywords('D:\\untitled\\test')
print(set_word)
print(5244)
print(formated_data)
matrix = build_matirx(set_word)
matrix = count_matrix(matrix, formated_data)
data1 = pd.DataFrame(matrix)
data1.to_csv('data.csv', index=0, columns=None, encoding='utf_8_sig')
main()