关于n对角矩阵数据结构_思考(1)矩阵的特征值、特征向量、代数重数、几何重数与相似对角化...

5e7f58f896414b1acec14c22cff3cc8f.png

本文为原创,如有错误疏漏,烦请指出。如需转载,请联系笔者,Dr.shenyue@http://gmail.com。


一、方阵的特征值和特征向量

阶方阵,
叫做A的特征向量(eigenvector),
叫做特征值(eigenvalue)。首先寻找特征值,是通过求解A的行列式
,一共
个特征值【注意矩阵的
行列式
是个标量,是个关于变量
的n次多项式】。多项式
的根有r个,其中根
重,根
重,以此类推。然后找第i个特征值
的特征向量,本质就是寻找线性方程
的解【注意
这里
是个方阵,代入具体某个特征值
而得到,不是标量,也不是行列式】,也就是n阶方阵
的零空间
的eigenvector正好跟A的零空间N(A) 的定义一样。

问题思考:

某个特征值

对应的特征向量
有无穷多个,因为它本质是线性方程
的求解,
前面乘以一个常数
就行,所以
问特征值
的特征向量有多少个没有意义(因为有无数个),问该特征值
对应的特征向量组成的空间(称作特征空间eigenspace),一共有几维才有意义
,也就是线性方程
的解有几维,或者说
有几维。
每一个特征值,都对应一个特征空间(eigenspace——
),假设
维。那么特征值
的特征空间的维数
是否等于它在多项式
的次数
呢?A的r个特征值对应的eigenspace合起来的维数是否等于n?

探索

  • 对于n维单位矩阵
    ,我们知道任何一个向量x,有
    。所以对于单位矩阵,对应于特征值1的eigenspace——
    的维数是n。
  • 单位矩阵是eigenspace正好等于n,一般的对角矩阵是怎样?
    ,对于特征值2,它的特征向量是
    ,a、b可以是任意取值(可以相等,可以不相等,但不能同时为0)值,所以特征值2的特征空间为2维,它的eigenspace——
    的基为
    。对于特征值4,它的特征向量是
    ,eigenspace——
    维数为1,基为
    。所以两个eigenspace——
    一共是2+1=3维,恰好等于n,而且我们发现
    不同特征值的eigenspace是线性无关的(因为如果不是线性无关的,那么该特征向量会同时是两个特征值的,所以只能是线性无关)。
  • 以上可看出对角矩阵的所有eigenspace的维数加起来等于
    。假设A的特征值
    的eigenspace——
    维(可能
    ,可能
    ),
    的eigenspace——
    维(可能
    ,可能
    ),以此类推。再假设所有r个eigenspace合起来有n维,也就是
    。所有r个eigenspace合起来一共n维的空间中,任选一组基
    , 显然
    都是
    的列向量。由于
    ,重新写为
    其中
    可能为0,可能不为0。令
    (n阶方阵),重写上式
    。因为
    中的列向量都是线性无关的,也就是n阶方阵P的秩rank(P)=n,所以A矩阵可以通过
    进行相似对角化。显然如果
    ,而是
    ,那么P矩阵就是
    的矩阵,P不再是n阶方阵,rank(P)=
    ,所以矩阵P不可逆,也就无法通过
    对A矩阵进行相似对角化。
  • 因此只有当所有特征值对应的特征空间(不同的特征值,对应的特征向量一定线性不相关)合起来的维数为n时,才可以相似对角化。而且我们从上面可知,不同的
    的书写顺序,对应的对角矩阵里面
    的顺序也不同。
  • 我们知道
    。多项式
    中,
    的次数为
    次(又叫做
    特征值
    的代数重数
    Algebraic multiplicity,因为它是代数多项式中
    的次数),
    次,以此类推。假设
    的eigenspace——
    的维数
    (又叫做
    特征值
    的几何重数
    Geometric multiplicity,因为它是几何空间中向量的维数),那么问题来了,特征值
    的代数重数是否等于它的几何重数?答案是代数重数
    几何重数,即
    。例如:
    特征值为2,
    ,所以
    的维数为
    (多项式的
    的次数) 。
  • 既然
    ,所以
    。因为
    ,也就是所有特征值对应的eigenspace合起来的
    个基向量组成的矩阵
    ,不是方阵,所以无法有
    ,也就是无法通过有
    进行相似对角化。Jordan Canonical Form Theorem告诉我们是由于r个特征空间维数的和
    ,无法相似对角化,但是我们可以
    退而求其次,可以将A矩阵相似变换成m个Jordan block(约当块)的对角形式
    ,其中第i
    个约当块为
    。那么问题来了,把n阶方阵A相似变换成约当块对角型
    的n阶
    长什么样?除了r个特征值对应的
    个基向量,剩下的
    个列向量是什么?
  • 可进行相似对角化的矩阵A,它对角化后
    的每个对角元
    都对应
    矩阵的某个特征值的eigenspace中的一个基向量(当然了,基向量组又可以自己去选),特征值
    就对应P矩阵的
    个基,特征值
    就对应P矩阵的
    个基,以此类推。那么对于不可相似对角化而只能相似约当块对角化
    的矩阵A,
    每个Jordan block也对应某个特征值的eigenspace中的一个基向量,所以如果特征值
    的eigenspace有3维,那么
    就对应3个Jordan block。所以如果把n阶方阵A相似变换成约当块对角型
    的约当块的个数一共为
    ,也就是所有eigenspace合起来的维数
    ,注意这里m并不等于特征值的个数
    ,也不是
  • 假设特征值
    的eigenspace——
    2维,就对应有
    2个约当块
    ,那么
    的第一个约当块是
    ,size=3。还是
    ,size=2。还是
    ,size=1?或者是其他的size呢?怎么算出它的size呢?
    的第二个约当块
    又是什么size呢,又怎么算出它的size呢?不过有一点我们可以推断的是,由于A与
    相似,所以
    所以特征值
    (几何重数) 个约当块的size之和一定等于
    (代数重数) ,
    也就是
    的次数。我们在这里理清了几何重数与代数重数的关系。显然如果特征值
    的约当块全是size=1的,那么特征值
    代数重数=几何重数只要特征值
    有一个约当块的size
    2,那么特征值
    的 代数重数
    几何重数。如果约当块全是size=1的,那么特征值
    的 代数重数=几何重数。
  • 我们知道
    ,由于
    其中*代表可能为0或者1。假设特征值
    的代数重数为11,那么
    的对角线上有11个0;特征值
    的几何重数为5,所以对应有5个约当块,这5个约当块加起来的size等于
    对角线上0的个数=11。
    =5 (也就是几何重数),说明有5个至少size为1的约当块;
    =9,说明有9-5=4个至少size为2的约当块;
    =11,说明有(11-9)个至少size为3的约当块。由于
    恰好等于代数重数11,到头了,说明特征值
    没有比3更大size的约当块,说明特征值
    对应的5个约当块中最大的size为3。所以size为3的约当块有11-9=2个,size为2的约当块有(9-5)-(11-9)=2个,size为1的约当块为5-(9-5)=1个。2+2+1=5个约当块,也就是特征值
    的几何重数为5。
  • 另一个角度,任取某个特征值
    的eigenspace的某个基
    ,那么我们有
    。如果能找到
    使得
    有解,也就是
    的解,也就是线性齐次方程
    的解至少有1维,也就是
    的零空间维数
    至少为1,说明对应于
    的Jordan block的size至少为2;如果进一步,能找到
    使得
    ,也就是
    的零空间维数
    至少为1维,那么对应
    的Jordan block的size至少为3,一直这么找下去,直到找不到变量满足为止。如果最大size的Jordan block为
    ,我们设它对应的最底层的变量为u,也就是找不到下一个变量
    满足
    ,我们往上推。因为u是由
    一级一级推过来的,重写成
    ,一直到
    。因为
    的eigenspace的某个基,所以
    ,由
    ,我们有
  • 假设A矩阵有两个特征值
    。对于特征值
    ,假设
    的解有2维,也就是
    的eigenspace有2维,所以对应
    的Jordan block一共有2个。任意选取
    eigenspace的一组基
    。假设对于
    的Jordan block的size为3,也就是能找到
    ,却无法找到
    满足
    ,所以
    ,也就是
    对于
    的Jordan block的size为 1,也就是无法找到
    满足
    。对于特征值
    ,假设
    的解只有1维,也就是
    的eigenspace有1维,所以对应
    的Jordan block只有1个。任意选取
    eigenspace的基
    ,假设对于
    我们发现Jordan block的size为2,也就是能找到
    满足
    ,却无法找到
    满足
    ,所以
    最后我们有使得A矩阵约当块对角化的P矩阵:
    这样我们就找到了P阵。类似,我们可以把P矩阵里的向量进行别的排序。
    叫做
    的特征向量
    的广义特征向量,
    的广义特征空间维数是2。
    叫做
    的特征向量
    的广义特征向量,
    的广义特征空间维数是1。
  • 之所以称
    的特征向量,而
    的广义特征向量,不是特征向量,是因为
    ,加上
    ,我们代入到
    ,我们有
  • 特别补充:如果实矩阵
    有复数根,由于A是实数矩阵,所以多项式
    复数的根永远会成对出现,相应地特征向量也是成对出现。假设复数根为
    (注意a,b是标量常数),它特征空间假设只有1维(几何空间),对应的jordan block只有一个,取特征向量为
    (注意
    )。
  • 假设
    广义特征向量为两维,对应的2+4i的jordan block为

所以最后总结回答问题:每一个特征值,都对应一个eigenspace,那么A的所有特征空间(eigenspace)的维数加起来是不是恰好等于n?A的所有eigenspace会不会小于n?

答案:1. 对于可对角化的n维方阵矩阵A,当它有0特征值时,如果0特征值的eigenspace维数=a,那么它的所有非零特征值的eigenspace合起来的维数=n-a。A的所有eigenspace的维数是a+n-a=n,恰好等于n。

2. 对于只能约当块对角化的n维方阵A,当它有0特征值时,如果0特征值的Jordan block有a个,也就是0特征值的eigenspace的维数为a,0特征值的a个Jordan block广义特征向量的维数加起来为b,其他各个非零特征值的eigenspace维数加起来为c,这c个Jordan block的广义特征空间的维数加起来为d,这时a+b+c+d=n,A的所有eigenspace的维数是a+c<n。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值