本文为原创,如有错误疏漏,烦请指出。如需转载,请联系笔者,Dr.shenyue@http://gmail.com。
一、方阵的特征值和特征向量
,
为
阶方阵,
叫做A的特征向量(eigenvector),
叫做特征值(eigenvalue)。首先寻找特征值,是通过求解A的行列式
,
,一共
个特征值【注意矩阵的
行列式
的n次多项式】。多项式
的根有r个,其中根
有
重,根
有
重,以此类推。然后找第i个特征值
的特征向量,本质就是寻找线性方程
的解【注意
这里
而得到,不是标量,也不是行列式】,也就是n阶方阵
的零空间
。
的eigenvector正好跟A的零空间N(A) 的定义一样。
问题思考:
某个特征值
对应的特征向量
有无穷多个,因为它本质是线性方程
的求解,
前面乘以一个常数
就行,所以
问特征值
的特征向量有多少个没有意义(因为有无数个),问该特征值
对应的特征向量组成的空间(称作特征空间eigenspace),一共有几维才有意义
,也就是线性方程
的解有几维,或者说
有几维。
每一个特征值,都对应一个特征空间(eigenspace——
),假设
为
维。那么特征值
的特征空间的维数
是否等于它在多项式
中
的次数
呢?A的r个特征值对应的eigenspace合起来的维数是否等于n?
探索
- 对于n维单位矩阵
,我们知道任何一个向量x,有。所以对于单位矩阵,对应于特征值1的eigenspace——的维数是n。
- 单位矩阵是eigenspace正好等于n,一般的对角矩阵是怎样?
,对于特征值2,它的特征向量是,a、b可以是任意取值(可以相等,可以不相等,但不能同时为0)值,所以特征值2的特征空间为2维,它的eigenspace——的基为和。对于特征值4,它的特征向量是,eigenspace——维数为1,基为。所以两个eigenspace——和一共是2+1=3维,恰好等于n,而且我们发现不同特征值的eigenspace是线性无关的(因为如果不是线性无关的,那么该特征向量会同时是两个特征值的,所以只能是线性无关)。
- 以上可看出对角矩阵的所有eigenspace的维数加起来等于
。假设A的特征值的eigenspace——有维(可能,可能),的eigenspace——有维(可能,可能),以此类推。再假设所有r个eigenspace合起来有n维,也就是。所有r个eigenspace合起来一共n维的空间中,任选一组基, 显然到都是的列向量。由于,重新写为其中可能为0,可能不为0。令(n阶方阵),重写上式。因为中的列向量都是线性无关的,也就是n阶方阵P的秩rank(P)=n,所以A矩阵可以通过进行相似对角化。显然如果,而是,那么P矩阵就是的矩阵,P不再是n阶方阵,rank(P)=,所以矩阵P不可逆,也就无法通过对A矩阵进行相似对角化。
- 因此只有当所有特征值对应的特征空间(不同的特征值,对应的特征向量一定线性不相关)合起来的维数为n时,才可以相似对角化。而且我们从上面可知,不同的
的书写顺序,对应的对角矩阵里面的顺序也不同。
- 我们知道
,。多项式中,的次数为次(又叫做特征值的代数重数Algebraic multiplicity,因为它是代数多项式中的次数),有次,以此类推。假设的eigenspace——的维数(又叫做特征值的几何重数Geometric multiplicity,因为它是几何空间中向量的维数),那么问题来了,特征值的代数重数是否等于它的几何重数?答案是代数重数特征值为2,。,所以的维数为(多项式的的次数) 。
- 既然
,所以。因为,也就是所有特征值对应的eigenspace合起来的个基向量组成的矩阵,不是方阵,所以无法有,也就是无法通过有进行相似对角化。Jordan Canonical Form Theorem告诉我们是由于r个特征空间维数的和,无法相似对角化,但是我们可以退而求其次,可以将A矩阵相似变换成m个Jordan block(约当块)的对角形式:,其中第i个约当块为。那么问题来了,把n阶方阵A相似变换成约当块对角型的n阶长什么样?除了r个特征值对应的个基向量,剩下的个列向量是什么?
- 可进行相似对角化的矩阵A,它对角化后
的每个对角元都对应矩阵的某个特征值的eigenspace中的一个基向量(当然了,基向量组又可以自己去选),特征值就对应P矩阵的个基,特征值就对应P矩阵的个基,以此类推。那么对于不可相似对角化而只能相似约当块对角化的矩阵A,每个Jordan block也对应某个特征值的eigenspace中的一个基向量,所以如果特征值的eigenspace有3维,那么就对应3个Jordan block。所以如果把n阶方阵A相似变换成约当块对角型的约当块的个数一共为,也就是所有eigenspace合起来的维数,注意这里m并不等于特征值的个数,也不是。
- 假设特征值
的eigenspace——有2维,就对应有2个约当块,那么的第一个约当块是,size=3。还是,size=2。还是,size=1?或者是其他的size呢?怎么算出它的size呢?的第二个约当块又是什么size呢,又怎么算出它的size呢?不过有一点我们可以推断的是,由于A与相似,所以,所以特征值的(几何重数) 个约当块的size之和一定等于(代数重数) ,也就是的约当块全是size=1的,那么特征值的代数重数=几何重数。只要特征值有一个约当块的size2,那么特征值的 代数重数几何重数。如果约当块全是size=1的,那么特征值的 代数重数=几何重数。
- 我们知道
,由于其中*代表可能为0或者1。假设特征值的代数重数为11,那么的对角线上有11个0;特征值的几何重数为5,所以对应有5个约当块,这5个约当块加起来的size等于对角线上0的个数=11。=5 (也就是几何重数),说明有5个至少size为1的约当块;=9,说明有9-5=4个至少size为2的约当块;=11,说明有(11-9)个至少size为3的约当块。由于恰好等于代数重数11,到头了,说明特征值没有比3更大size的约当块,说明特征值对应的5个约当块中最大的size为3。所以size为3的约当块有11-9=2个,size为2的约当块有(9-5)-(11-9)=2个,size为1的约当块为5-(9-5)=1个。2+2+1=5个约当块,也就是特征值的几何重数为5。
- 另一个角度,任取某个特征值
的eigenspace的某个基,那么我们有。如果能找到使得有解,也就是的解,也就是线性齐次方程的解至少有1维,也就是的零空间维数至少为1,说明对应于的Jordan block的size至少为2;如果进一步,能找到使得,也就是的零空间维数至少为1维,那么对应的Jordan block的size至少为3,一直这么找下去,直到找不到变量满足为止。如果最大size的Jordan block为,我们设它对应的最底层的变量为u,也就是找不到下一个变量满足,我们往上推。因为u是由一级一级推过来的,重写成,一直到。因为是的eigenspace的某个基,所以,由,我们有。
- 假设A矩阵有两个特征值
和。对于特征值,假设的解有2维,也就是的eigenspace有2维,所以对应的Jordan block一共有2个。任意选取eigenspace的一组基、。假设对于的Jordan block的size为3,也就是能找到,却无法找到满足,所以,也就是对于的Jordan block的size为 1,也就是无法找到满足,。对于特征值,假设的解只有1维,也就是的eigenspace有1维,所以对应的Jordan block只有1个。任意选取eigenspace的基,假设对于我们发现Jordan block的size为2,也就是能找到满足,却无法找到满足,所以,最后我们有使得A矩阵约当块对角化的P矩阵:这样我们就找到了P阵。类似,我们可以把P矩阵里的向量进行别的排序。叫做的特征向量的广义特征向量,的广义特征空间维数是2。叫做的特征向量的广义特征向量,的广义特征空间维数是1。
- 之所以称
为的特征向量,而为的广义特征向量,不是特征向量,是因为由,加上,我们代入到,我们有。
- 特别补充:如果实矩阵
有复数根,由于A是实数矩阵,所以多项式复数的根永远会成对出现,相应地特征向量也是成对出现。假设复数根为(注意a,b是标量常数),它特征空间假设只有1维(几何空间),对应的jordan block只有一个,取特征向量为(注意)。
- 假设
广义特征向量为两维,对应的2+4i的jordan block为。
所以最后总结回答问题:每一个特征值,都对应一个eigenspace,那么A的所有特征空间(eigenspace)的维数加起来是不是恰好等于n?A的所有eigenspace会不会小于n?
答案:1. 对于可对角化的n维方阵矩阵A,当它有0特征值时,如果0特征值的eigenspace维数=a,那么它的所有非零特征值的eigenspace合起来的维数=n-a。A的所有eigenspace的维数是a+n-a=n,恰好等于n。
2. 对于只能约当块对角化的n维方阵A,当它有0特征值时,如果0特征值的Jordan block有a个,也就是0特征值的eigenspace的维数为a,0特征值的a个Jordan block广义特征向量的维数加起来为b,其他各个非零特征值的eigenspace维数加起来为c,这c个Jordan block的广义特征空间的维数加起来为d,这时a+b+c+d=n,A的所有eigenspace的维数是a+c<n。