insert 数组_LeetCode189-旋转数组

b5cd63ad382c90f1d73a13484b1a1aa3.png

又是很久没打卡了

前段时间,是外出了一趟

学校有个暑期企业走访活动

包所有费用

于是,报名想着出去玩一趟

去了南京中兴,杭州网易,招银,海康威视公司

感触还是有一些的

这么深刻的话题我就不多说了哈

不过在那边,吃的是真嗨

专吃地方特色菜

最后,参观网易的时候

一上称,果然胖了好几斤

回学校,开始控制体重了

31b29040bf0d7040b08bf6ddbe067a65.png

189-旋转数组

给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数。

示例 1:

输入: [1,2,3,4,5,6,7] 和 k = 3
输出: [5,6,7,1,2,3,4]

解释:

向右旋转 1 步: [7,1,2,3,4,5,6]
向右旋转 2 步: [6,7,1,2,3,4,5]
向右旋转 3 步: [5,6,7,1,2,3,4]

示例 2:

输入: [-1,-100,3,99] 和 k = 2
输出: [3,99,-1,-100]

解释:

向右旋转 1 步: [99,-1,-100,3]
向右旋转 2 步: [3,99,-1,-100]

说明:

尽可能想出更多的解决方案,至少有三种不同的方法可以解决这个问题。
要求使用空间复杂度为 O(1) 的 原地 算法。

思路:

本题解答起来不难,主要的难点就是:题目要求空间复杂度为O(1),也就是不能用另一个数组来保存数据。本题我是想到了两种解法,思路都挺清晰的,下面一一分享。

方法一

此种方法思路很easy,就是把nums列表想象成一个栈,右移一个位置,就相当于是把栈顶元素给取出来放置在栈底位置。所以直接用列表的insert()函数和pop()函数即可完成该操作。

代码如下:

class Solution(object):
    def rotate(self, nums, k):
        """
        :type nums: List[int]
        :type k: int
        :rtype: None Do not return anything, modify nums in-place instead.
        """
        true_k = k%len(nums)
        for index in range(true_k):
            nums.insert(0, nums[-1])
            nums.pop()


if __name__ == "__main__":
    nums = [1,2,3,4,5,6,7]
    k = 3
    Solution().rotate(nums, k)

执行效率一般般吧,在30%左右。

6c4e77d8e25451e49e4012df0fc23228.png

方法二:

方法一是一步一步进行右移操作的,执行效率自然是不高的,那么,如果我们能一次性进行多步数的右移操作,执行效率是不是可以大幅度提高?答案是肯定的。使用nums列表的切片操作即可快速实现。

代码如下:

class Solution(object):
    def rotate(self, nums, k):
        """
        :type nums: List[int]
        :type k: int
        :rtype: None Do not return anything, modify nums in-place instead.
        """
        true_k = k%len(nums)
        for index in range(true_k):
            nums.insert(0, nums[-1])
            nums.pop()


if __name__ == "__main__":
    nums = [1,2,3,4,5,6,7]
    k = 3
    Solution().rotate(nums, k)

执行效率还是很不错的,在90%以上。

dda4e2c0cdb3a73d2d6be1c95e25ab9a.png

各位朋友要是有更好的方法,也希望多多留言啊!!!

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值