matlab表示特殊矩阵,matlab的特殊矩阵

本文介绍了MATLAB中的一些特殊矩阵,包括魔方矩阵magic()、范德蒙矩阵vander()、希尔布特矩阵hilb()以及伴随矩阵compan()。通过实例展示了它们的生成及性质,如魔方矩阵的行、列、主、副对角线元素和相等,范德蒙矩阵在多项式计算中的应用,希尔布特矩阵的病态特性,以及伴随矩阵与多项式根的关系。
摘要由CSDN通过智能技术生成

matlab的特殊矩阵

魔方矩阵 magic()

范德蒙矩阵vander()

希尔布特矩阵 hilb()

伴随矩阵—compan§------p为由高阶到低阶的系数

帕斯卡矩阵----pascal()

魔方矩阵 magic()

行,列,主,副对角线上的元素之和相等

>> A = magic(8)

A =

64 2 3 61 60 6 7 57

9 55 54 12 13 51 50 16

17 47 46 20 21 43 42 24

40 26 27 37 36 30 31 33

32 34 35 29 28 38 39 25

41 23 22 44 45 19 18 48

49 15 14 52 53 11 10 56

8 58 59 5 4 62 63 1

>> sum(A(1,:))

ans =

260

>> sum(A(:,1))

ans =

260

范德蒙矩阵vander()

477fbff132339c02681d9e4fb9ebe753.png

>> A = vander(1:5)

A =

1 1 1 1 1

16 8 4 2 1

81 27 9 3 1

256 64 16 4 1

625 125 25 5 1

希尔布特矩阵 hilb()

2506efb1532d3aaf6b647748f11c9793.png

病态矩阵,阶数越大,越严重

>> format rat

>> H = hilb(4)

H =

1 1/2 1/3 1/4

1/2 1/3 1/4 1/5

1/3 1/4 1/5 1/6

1/4 1/5 1/6 1/7

伴随矩阵—compan§------p为由高阶到低阶的系数

多项式伴随矩阵的特征值就是多项式的根

e2da3ff03a61252414118d3b292c54c1.png

>> P = [1,-2,-5,6]

P =

1 -2 -5 6

>> A = compan(P)

A =

2 5 -6

1 0 0

0 1 0

>> p = [1,-2,-5,6]

>> x = roots(P)--------求根

x =

-2.000000000000000

3.000000000000003

1.000000000000000

>> format

>> A = eig(A)----------伴随矩阵的特征值

A =

-2.0000

3.0000

1.0000

帕斯卡矩阵----pascal()

e14be9d5f32f3b4d722f25c10bf27ec1.png

>> P= pascal(5)

P =

1 1 1 1 1

1 2 3 4 5

1 3 6 10 15

1 4 10 20 35

1 5 15 35 70

>> inv(P)

ans =

5 -10 10 -5 1

-10 30 -35 19 -4

10 -35 46 -27 6

-5 19 -27 17 -4

1 -4 6 -4 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值