lstm处理时序数据结构图_详解LSTM

Recurrent Neural Networks (RNN)

在使用深度学习处理时序问题时,RNN是最常使用的模型之一。RNN之所以在时序数据上有着优异的表现是因为RNN在

时间片时会将
时间片的隐节点作为当前时间片的输入,也就是RNN具有图1的结构。这样有效的原因是之前时间片的信息也用于计算当前时间片的内容,而传统模型的隐节点的输出只取决于当前时间片的输入特征。

4cc1e15f25df93bcef9d25dcadc1d3ec.png
图1:RNN的链式结构

RNN的数学表达式可以表示为

而传统的DNN的隐节点表示为

对比RNN和DNN的隐节点的计算方式,我们发现唯一不同之处在于RNN将上个时间片的隐节点状态

也作为了神经网络单元的输入,这也是RNN擅长处理时序数据最重要的原因。

所以,RNN的隐节点

有两个作用
  1. 计算在该时刻的预测值
    :
  2. 计算下个时间片的隐节点状态

RNN的该特性也使RNN在很多学术和工业前景,例如OCR,语音识别,股票预测等领域上有了十足的进展。

长期依赖(Long Term Dependencies)

在深度学习领域中(尤其是RNN),“长期依赖“问题是普遍存在的。长期依赖产生的原因是当神经网络的节点经过许多阶段的计算后,之前比较长的时间片的特征已经被覆盖,例如下面例子

eg1: The cat, which already ate a bunch of food, was full.
      |   |     |      |     |  |   |   |   |     |   |
     t0  t1    t2      t3    t4 t5  t6  t7  t8    t9 t10
eg2: The cats, which already ate a bunch of food, were full.
      |   |      |      |     |  |   |   |   |     |    |
     t0  t1     t2     t3    t4 t5  t6  t7  t8    t9   t10

我们想预测'full'之前系动词的单复数情况,显然full是取决于第二个单词’cat‘的单复数情况,而非其前面的单词food。根据图1展示的RNN的结构,随着数据时间片的增加,RNN丧失了学习连

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值