自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 机器学习-生成对抗网络WGAN-GP实战(四-2)

这里就涉及到WGAN-GP的训练代码,这一部分相对比较繁琐,和传统的GAN相比,关键就是损失函数的计算和梯度的计算。还是建议大家先读机器学习-生成对抗网络变种(三),有个基础概念。涉及到公式的地方我会着重说明。Part2WGAN-GP训练过程:主函数(主要部分): for epoch in range(epochs): for _ in range(5): batch_z = tf.random.normal([batch_size, z_dim])#

2022-04-24 16:17:53 1812

原创 机器学习-生成对抗网络WGAN-GP实战(四-1)

​上一篇文章简单介绍了WGAN-GP的原理,本文来实现WGAN-GP的实战。还是建议大家先读机器学习-生成对抗网络变种(三)。之前的博客写了DCGAN的实战代码,实际上在生成器和判别器网络构建方面都相差不大。大家可以参照机器学习-生成对抗网络实战(二-1),进行对照学习。​

2022-04-20 17:00:20 1710

原创 机器学习-生成对抗网络变种(三)

本篇主要介绍了DCGAN,BigGAN,WGAN,WGAN-GP。繁琐的公式推导并没有呈现,直接给出结论,简单易懂。

2022-04-20 10:39:58 694

原创 机器学习-生成对抗网络实战(二-2)

​本篇承接上一篇机器学习-生成对抗网络实战(二-1),本篇主要训练生成对抗网络(Generative Adversarial Network)生成器和判别器,大家应当认真理解训练的顺序,以及为什么要这样训练。​

2022-04-19 10:56:42 1161

原创 机器学习-生成对抗网络实战(二-1)

​建议大家先看机器学习-生成对抗网络基础概念(一),再来看实战就应该知道程序的具体流程了。本篇主要定义了生成对抗网络(Generative Adversarial Network)中的生成网络和判别网络部分,大家着重理解每一个网络层的含义和变换。具体的训练过程在下一节会有讲解,希望大家先将本篇看懂。

2022-04-19 10:50:46 1147

原创 机器学习-生成对抗网络基础概念(一)

本篇为生成对抗网络(Generative Adversarial Network)的基础知识,内容简单,但是较为重要,划线部分重点看。建议大家先认真看本篇文章,其中公式推导等复杂过程没有展现,对初学者来说看懂会用就行。在下一篇文章中我会在实际应用中继续讲解,但看明白代码的前提是要弄明白生成对抗网络的过程,以及每一步的意义后面才看得懂。后作写好之后附上链接。

2022-04-18 18:41:52 459

原创 深度强化学习-基于价值学习的高级技巧(五-1)

之前讲了TD算法和DQN,但实际上原始的DQN效果并不是很理想,因此本节主要讲解一些TD算法或者DQN的改进策略。包括经验回放,高估问题(目标网络target network,double Q-learning),噪声网络(Noisy Net)。

2022-04-16 19:48:38 874 1

原创 深度强化学习-基于价值学习的高级技巧-对决网络(五-2)

对决网络(dueling network)实属比较复杂和难以理解,我在博客末尾加上一点自己的总结与理解,虽然可能不太严谨,但绝对通俗易懂,大家一看就会!如有问题欢迎留言,本人几乎全天在线。

2022-04-16 15:35:09 1268 3

原创 机器学习-变分自编码器VAE实战(三)

​本篇主要内容是变分自编码器VAE的实战,希望大家可以对比机器学习-自编码器AE实战(二)进行对照学习,尤其是在自定义VAE类,以及网络训练部分,会有较大的不同。​

2022-04-14 15:25:51 1715 1

原创 机器学习-自编码器AE实战(二)

本篇是自编码器实战,和之前相同的是数据集加载过程,但需要注意不使用标签信息。此处的自定义类,训练过程等都是换汤不换药,但图片重建是我们之前没接触到的,大家可以认真看一下。对于神经网络的学习关键要明白输入是什么,输出是什么,包括数值形状等。

2022-04-14 10:21:44 1114

原创 机器学习-自编码器,变分自编码器及其变种的基本原理(一)

本篇从自编码器(Auto-Encoder)入手,进行扩展,论述了监督学习和无监督学习的相关知识。接着讲解了自编码器的各种变种,以及比较难以理解的变分自编码器(Variational Auto-Encoders)。最后补充了极大似然估计这一数学知识,以及对变分自编码器的问题的优化。

2022-04-13 16:51:28 3598

原创 深度强化学习-强化学习基础-SARSA算法(四)

本片主要介绍SARSA算法,蒙特卡洛算法,以及自举的概念。内容比较细,比较基础,大家可以认真看。有不懂的地方可以先看之前的文章。...

2022-04-11 16:07:50 1657

原创 深度强化学习-基于价值的强化学习-TD算法和Q学习(三)

本文主要介绍TD算法和Q学习算法

2022-04-10 11:01:45 1802

原创 深度强化学习-强化学习基础(二)

强化学习对于初学者来说会有专业名词,先对其进行解释。

2022-04-09 10:54:36 4649

原创 机器学习-循环神经网络GRU理论知识(四)

LSTM 具有更长的记忆能力,但是 LSTM 结构相对较复杂,计算代价较高,模型参数量较大。们尝试简化 LSTM 内部的计算流程,特别是减少门控数量。GRU 把内部状态向量和输出向量合并,统一为状态向量,门控数量也减少到 2 个:复位门 (Reset Gate)和更新门(Update Gate)。

2022-04-08 10:05:19 838

原创 机器学习-循环神经网络LSTM实战(三)

本篇为LSTM在情感分类问题中的实战

2022-04-07 18:34:49 850

原创 机器学习-循环神经网络LSTM理论知识(三)

循环神经网络在处理较长的句子时只能理解有限长度的信息,对于较大范围内的信息不能很好利用起来,被称为短时记忆。后来提出长短时记忆网络(Long Short-Term Memory,简称 LSTM),LSTM 相对于基础的 RNN 网络来说,记忆能力更强,更擅长处理较长的序列信号数据。

2022-04-06 16:51:52 896

原创 机器学习-循环神经网络情感分类问题(二)

本篇主要应用SimpleRNN实现了对于循环神经网络情感分类问题的代码讲解

2022-04-06 11:15:30 918

原创 机器学习-循环神经网络入门(一)

本文为循环神经网络的基础文章,读完该篇文章因该会对循环神经网络有一个大概的认识。详细实战代码放在下一节。

2022-04-05 16:51:59 936

原创 深度强化学习-深度学习基础(一)

深度学习一些基础内容,为后面的学习打基础

2022-04-04 19:51:41 579

原创 机器学习-卷积神经网络之深度残差网络CIFAR10实战(四)

背景介绍:MNIST数据集识别黑白的手写数字图片,不适合彩色模型的RGB三通道图片。本次实战利用深度残差网络对CIFAR10数据集进行分析与学习。有不懂的地方可以看代码下面的解释与讲解

2022-04-03 16:36:02 1794

原创 机器学习-卷积神经网络之深度残差网络(三)

背景介绍:MNIST数据集识别黑白的手写数字图片,不适合彩色模型的RGB三通道图片。用深度残差网络学习多通道图片。简单介绍一下深度残差网络:普通的深度网络随着网络深度的加深,拟合效果可能会越来越好,也可能会变差,换句话说在不停地学习,但是有可能学歪了。本次介绍的深度残差网络最后输出H(x)=x+f(x)。其中x是本层网络的输入,f(x)是本层网络的输出,H(x)是最终得到的结果。由以上公式可以表明,最终结果包含输入x,也就是说不论怎么学习,起码效果不会变差,不会学歪。x和f(x)之间的变

2022-04-03 15:23:42 2333

原创 机器学习-卷积神经网络MNIST实战(代码)

MNIST实战代码

2022-04-02 15:31:24 483

原创 机器学习-卷积神经网络MNIST实战(二)

MNIST数据集的提出以及识别最早应用于邮票编码识别任务中,其主要内容就是通过机器学习来完成对数字的准确识别。本文实例方法是使用的TensorFlow框架,使用的编译软件是pycharm,大家自行下载安装。大家可以耐心观看代码,本代码实测能跑通,基本每一行都有注释,重要的地方以及易混淆的地方都会有展开解释。目录1.引入数据集:2.构建卷积神经网络:3.循环训练:

2022-04-02 15:28:13 1134

原创 机器学习-卷积神经网络入门(一)

本文适合初学者观看,是本人学习过程中的总结与体会,对新手很有帮助。

2022-04-02 09:11:18 206

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除