正态分布某一点的概率怎么算_概率分布知识总结

本文总结了概率分布知识,包括随机变量的离散型和连续型,详细阐述了伯努利分布、二项分布、几何分布和泊松分布等离散概率分布,以及正态分布的特性。还提到了总体和样本的概念,以及中心极限定理在估计总体参数中的应用。

随机变量

随机变量分为离散型随机变量连续型随机变量

离散型随机变量的概率计算公式为概率质量函数(PMF),统计图中的形状为离散概率分布

连续型随机变量的概率计算公式为概率密度函数(PDF),统计图中的形状为连续概率分布

离散概率分布

离散随机变量(概率质量函数PMF),其中常见的包括伯努利分布、二项分布、几何分布和泊松分布

一、伯努利分布(0-1分布)

单次随机试验,只有"成功(值为1)"或"失败(值为0)"这两种结果,记成功概率为p(0≤p≤1),则失败概率为q=1-p。

5df8e2fbed50ab4bc3454260351839aa.png

062ae93f4c43c3dab116109a2ac39f4a.png

二、二项分布

二项分布即重复N次独立的伯努利分布,二项分布求出的结果即某事件发生x次的概率

p表示成功的概率;k表示想知道成功的次数。P(X=k)=C(n,k)(p^k)*(1-p)^(n-k)。

3c40c8b3bcde7d528474a143ebd84cb2.png

f43fd9b543447ef01cdec3b86a89638e.png

三、几何分布

几何分布同样以伯努利分布为基础,即在N次伯努利分布试验中,试验k次才第一次获得成功的概率

286955d5603fc59a204b1e872abc09f6.png

5b5c11e2382788973ce122c1156fc489.png

四、泊松分布

一个事件在一段时间内随机发生,其服从泊松分布的条件为:

(1)将该时间段无限分隔成很多个小的时间段,在这个小的时间段内,事件发生的概率非常小,不发生的概率非常大。

(2)在每个小的时间段内,事件发生的概率是稳定的,且与小的时间段的长度成正比。

(3)该事件在不同的小时间段里,发生与否相互独立。

c0da2a02379cb1745656c601fceb2754.png

a5e74d8161d7b05fbfe493f87e5037f8.png

二、正态分布

正态分布属于连续型随机变量,若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

因为是连续性随机变量,求概率函数为概率密度函数(PDF)

cac8d7c6443f09ff38c860603aae2fd2.png

b4db2e498acf91fd4b72325429632275.png

三、总体和样本

导入随机数random模块,抽奖案例以及数据框抽样方法

41e139ab6ceac33367e41eae3da2383e.png

d37aace8bc18b2c19495bce69ae27096.png

四、中心极限定理

1、样本的平均值约等于总体平均值;不管总体是什么分布,任意总体的样本平均值都会围绕在总体的平均值周围,并且呈正态分布。

2、用样本估计总体标准差

4f8289e4dc2d114032b7438ea34542de.png

公式总结:

  1. 伯努利分布:stats.bernoulli.pmf(随机变量X,单次概率p)
  2. 二项分布:stats.binom.pmf(随机变量X,做事情的次数n,单次概率p)
  3. 几何分布:stats.geom.pmf(随机变量X,单次概率p)
  4. 泊松分布:stats.poisson.pmf(随机变量X,平均发生次数mu)
  5. 正态分布:stats.norm.pdf(随机变量X,平均值mu,标准差sigma)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值