最大输出信噪比准则接收机
第9章数字信号的最佳接收 本章主要内容 §9.1 引言(什么是“最佳接收”) §9.2 最大信噪比准则(即匹配滤波器) §9.3 最小误码率准则 §9.4 二进制最佳接收机举例 §9.1 引言 一、什么是“最佳接收” 类似于香农定理指出了特定带宽和信噪比条件下的传信率的极限, “最佳接收”告诉人们在特定的发送波形和噪声情况下,接收机所能达到的最佳接收效果的极限 即“最佳接收”是一种理论,是一种努力方向,但在实际中并不一定这么去设计接收机。 二、最佳接收准则 “最佳”有不同的标准,我们把这些标准称为“最佳接收准则”,常见的准则有 最大输出信噪比准则 经过对信号特殊处理,使得输出信号在特定的时刻达到最大信噪比 最小均方差准则 因为“方差”代表着相似度,所以接收信号与哪个信号方差最小就表示发送的是哪个信号 最小误码率准则 使得差错的概率最小(从概率分布密度入手) §9.2 最大信噪比准则及其最佳接收 以“最大信噪比”为准则的最佳接收机又称为“匹配滤波器”,下面将解释这个名字的由来 输出信号的瞬时功率 输出噪声的平均功率 根据§3.9节中的结论公式(3.9.8)可知 一个平稳随机过程通过线性系统后的功率谱密度是原来的|H(ω)|2倍 所以当功率谱密度为n0/2高斯噪声通过线性的匹配滤波器时,输出噪声功率谱密度为 匹配滤波器在t0时刻输出的瞬时信噪比 匹配滤波器最大瞬时信噪比 获得最大瞬时信噪比的条件 即上式中等号成立的条件,也就是许瓦兹不等式中等号成立的条件,为两个函数共轭 h(t)与s(t)的波形关系 通过对任意一个s(t)波形,画出h(t)波形的方法,我们可知 h(t)与s(t)关于t=Tb/2这条竖线呈左右对称 如 匹配滤波器的输出信号表达式 根据信号与系统知识,输出信号应为单位冲激响应与输入信号之卷积,即 [例题]已知s(t)如图所示,求 (1)输出最大信噪比的时刻 (2)匹配滤波器的单位冲激响应和输出波形 (3)最大信噪比的值 关于这类题型的总结 1、 h(t)与输出信号不是一回事 2、 h(t)与s(t)关于Tb/2对称 3、输出信号是h(t)与s(t)的卷积,通常要分段来讨论相乘以后的积分结果 4、信号能量可以从信号波形中计算出来 匹配滤波器最佳接收模型 作业 课后习题9.1 注意: (1)设噪声功率谱密度n0已知 (2)h(t)与输出信号不是一回事 (3)h(t)与s(t)关于Tb/2对称 (4)而输出信号是h(t)与s(t)的卷积,共分4段 §9.3 最小误码率准则 我们在第7章讲过,二进制不归零信号的误码率 最大似然准则 根据上面的公式,我们可以得出一个误码率最小的最佳判决准则 这个准则简称为“最大似然准则” 当发送信号不是恒定电平信号时的条件概率分布密度(证明过程从略) 例如2ASK/2FSK/2(D)PSK调制波形,发”1”或发“0”时,波形不是一个恒定电平 所以该信号加上噪声后,也不是一个简单的高斯分布 可证明其k维联合概率密度为 任意二进制波形的最大似然准则 对于非恒定电平波形的信号(如2进制数字调制信号),最大似然准则变成: 最小误码率准则下的最佳接收机 对上式两端同取以e为底的对数(因为指数函数不易用电路实现) 最小误码率准则下的最佳接收机 最小误码率准则下的最佳接收机 整理上式得 §9.4 二进制最佳接收机举例 2ASK匹配滤波器(即最大信噪比准则接收) 二进制最佳接收机举例 等概率条件下2PSK最小误码率准则接收机 (教材上的图错了) 本章重点小结 常见的最佳接收准则 最大输出信噪比准则(匹配滤波器) h(t)的求法 so(t)的求法 最大信噪比的输出时刻和数值计算 最大似然准则公式 t 判决 t t t t t t t * 严谨 严格 求实 求是 第9章 数字信号的最佳接收 * 对于考研的同学,9.3节和9.2节同等重要 发送信号 高斯白噪声 所以输出信号的瞬时功率为 这就是匹配滤波器能获得的最大瞬时信噪比 对上式两边同时取反付立叶变换可得 (积分过程详见公式9.2.9) 在电路学中,两个共轭的阻抗,我们通常称作“匹配”,这正是“匹配滤波器”名称的由来 根据付立叶变换时移特性 则 根据第7章的讨论,最佳判决电平y应满足: 当发“1”或发”0”是一个恒定电平时 两个条件概率就是高斯分布,从而可以具体计算。 但,如果信号不是恒定信号呢? 把积分号里的平方项展开… 由于基于这个假设,所以下面的结论和框图不适用于单极性的基带信号和2ASK信号! + + * 严谨 严格 求实 求是 第9章 数字信号的最佳接收