《统计学习方法》第二版 -- 第三章 k近邻法

k-NN 是一种基本分类与回归方法。

输入为实例的特征向量,对应于特征空间的点;

输出为实例的类别,可以取多类

分类时,对于新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测。

因此,k近邻不具有显式的学习过程。

k近邻法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。

k值的选择、距离度量、分类决策规则是k近邻法的三个基本要素。

其中:

距离度量:

L_p (x_i,x_j) = \left ( \sum_{l=1}^N |x_i^{(l)} - x_j^{(l)}|^p \right )^{\frac {1}{p}}

p = 2 为欧式距离

p = 1 为曼哈顿距离

p = ∞ 为各个坐标距离的最大值即

L_\infty (x_i, x_j) = \max \limits_{l} |x_i^{(l)} - x_j^{(l)}|

 

k值小时,k近邻模型更复杂,k值的选择反应了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的K

常用的分类规则是多数表决,对应于经验风险最小化

 

KD树是一种便于对K维空间重的数据进行快速检索的数据结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值