dataframe groupby_pandas之groupby用法

这篇博客详细介绍了Pandas中DataFrame的groupby函数的使用,包括按单个或多个属性分组、数据处理(如求均值、最大值、最小值、方差)、分组绘图以及对组内不同列进行不同操作。通过实例展示了如何进行分组后的数据转换和统计分析。
摘要由CSDN通过智能技术生成

本文总结一下对pandas中的groupby()函数的一些基础用法 数据集节选自titanic.csv,在jupyter notebook中运行


导入依赖库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

读入数据

data = pd.read_csv('titanic.csv')
data

0cd4adae3287f92374837cd90b31ca5f.png

基本操作

按单个属性和按两个属性(按多个属性分组类似)分组的情况的应用

grouped = data.groupby('Pclass') # 按等级分组
grouped_multi = data.groupby(['Pclass', 'Sex']) # 按等级和性别分组
print(grouped)
print(grouped_multi)

6ba9c4f267c2266846918551997edc64.png

groupby方法返回的是DataFrameGroupBy对象,这是原DataFrame按照属性分组的结果,可以看成是分组后的多个DataFrame的组合

print(grouped['Age'])

25fffad2674a63d4ed308470f8b2bbef.png

对DataFrameGroupBy对象取一列,返回的是SeriesGroupBy对象,可以看成是分组后的多个Dat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值