python线性回归实例 x轴坐标相同_python实现多变量线性回归(Linear Regression with Multiple Variables)...

本文介绍了如何使用Python实现多变量线性回归,通过加载训练数据并进行特征缩放,利用梯度下降法求解模型参数。详细展示了数据预处理、损失函数计算和梯度下降算法的过程,最后绘制了梯度下降的收敛图并进行了预测。
摘要由CSDN通过智能技术生成

本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记

现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn)

1689a76352e61a87decef5b29a66aa04.png

表示为:

177daa3b215a328864dfab28aa17d4d5.png

引入x0=1,则公式

转化为:

49a63ea8917681b614c5acdb553927ea.png

1、加载训练数据

数据格式为:

X1,X2,Y

2104,3,399900

1600,329900

2400,369000

1416,2,232000

将数据逐行读取,用逗号切分,并放入np.array

#加载数据

#加载数据

def load_exdata(filename):

data =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值